Diabetes mellitus stands out as one of the most prevalent chronic conditions affecting pediatric populations. The escalating incidence of childhood type 1 diabetes (T1D) globally is a matter of increasing concern. Developing an effective model that l...
International journal of molecular sciences
40244055
Neutrophil extracellular traps (NETs) play a key role in the development of bronchopulmonary dysplasia (BPD), yet their molecular mechanisms in contributing to BPD remain unexplored. Using the GSE32472 dataset, which includes 100 blood samples from p...
The use of machine learning algorithms and artificial intelligence in medicine has attracted significant interest due to its ability to aid in predicting medical outcomes. This study aimed to evaluate the effectiveness of the random forest algorithm ...
BACKGROUND: Congenital heart disease (CHD) affects approximately 1% of newborns and is a leading cause of mortality in early childhood. Despite the importance of early detection, current screening methods, such as pulse oximetry and auscultation, hav...
BACKGROUND: Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent visi...
We hypothesized that incorporating postnatal dynamic factors would enhance the prediction accuracy of bronchopulmonary dysplasia in preterm infants. This retrospective cohort study included neonates born before 32 weeks of gestation at Seoul National...
BACKGROUND: To evaluate the effectiveness of machine learning (ML) models in predicting the occurrence of retinopathy of prematurity (ROP) and treatment need.
Early diagnosis and access to resources, support and therapy are critical for improving long-term outcomes for children with autism spectrum disorder (ASD). ASD is typically detected using a case-finding approach based on symptoms and family history,...
Journal of evaluation in clinical practice
40189779
BACKGROUND: Neonatal seizures are one of the most prevalent clinical manifestations of neurological conditions, requiring urgent intervention and detection. Machine learning (ML) and Deep Learning (DL) is an emerging promising tool for detecting and ...
Neonatal jaundice, characterized by elevated bilirubin levels causing yellow discoloration of the skin and eyes in newborns, is a critical condition requiring accurate and timely diagnosis. This study proposes a novel approach using 1D Convolutional ...