AIMC Topic: Infant

Clear Filters Showing 261 to 270 of 947 articles

RSV Severe Infection Risk Stratification in a French 5-Year Birth Cohort Using Machine-learning.

The Pediatric infectious disease journal
BACKGROUND: Respiratory syncytial virus (RSV) poses a substantial threat to infants, often leading to challenges in hospital capacity. With recent pharmaceutical developments to be used during the prenatal and perinatal periods aimed at decreasing th...

GNN-based structural information to improve DNN-based basal ganglia segmentation in children following early brain lesion.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Analyzing the basal ganglia following an early brain lesion is crucial due to their noteworthy role in sensory-motor functions. However, the segmentation of these subcortical structures on MRI is challenging in children and is further complicated by ...

The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning study.

BMC pediatrics
OBJECTIVE: The search for other indicators to assess the weight status of individuals is important as it may provide more accurate information and assist in personalized medicine.This work is aimed to develop a machine learning predictions of weigh s...

Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients.

International immunopharmacology
BACKGROUND: Approximately 10-20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance pred...

Artificial intelligence improves resident detection of pediatric and young adult upper extremity fractures.

Skeletal radiology
PURPOSE: We wished to evaluate if an open-source artificial intelligence (AI) algorithm ( https://www.childfx.com ) could improve performance of (1) subspecialized musculoskeletal radiologists, (2) radiology residents, and (3) pediatric residents in ...

Deep Learning Models for Abdominal CT Organ Segmentation in Children: Development and Validation in Internal and Heterogeneous Public Datasets.

AJR. American journal of roentgenology
Deep learning abdominal organ segmentation algorithms have shown excellent results in adults; validation in children is sparse. The purpose of this article is to develop and validate deep learning models for liver, spleen, and pancreas segmentation...

A machine learning model for the early diagnosis of bloodstream infection in patients admitted to the pediatric intensive care unit.

PloS one
Bloodstream infection (BSI) is associated with increased morbidity and mortality in the pediatric intensive care unit (PICU) and high healthcare costs. Early detection and appropriate treatment of BSI may improve patient's outcome. Data on machine-le...

Pediatric tympanostomy tube assessment via deep learning.

American journal of otolaryngology
PURPOSE: Tympanostomy tube (TT) placement is the most frequently performed ambulatory surgery in children under 15. After the procedure it is recommended that patients follow up regularly for "tube checks" until TT extrusion. Such visits incur direct...

Combining deep neural networks, a rule-based expert system and targeted manual coding for ICD-10 coding causes of death of French death certificates from 2018 to 2019.

International journal of medical informatics
OBJECTIVE: For ICD-10 coding causes of death in France in 2018 and 2019, predictions by deep neural networks (DNNs) are employed in addition to fully automatic batch coding by a rule-based expert system and to interactive coding by the coding team fo...

E-BabyNet: Enhanced Action Recognition of Infant Reaching in Unconstrained Environments.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Machine vision and artificial intelligence hold promise across healthcare applications. In this paper, we focus on the emerging research direction of infant action recognition, and we specifically consider the task of reaching which is an important d...