AIMC Topic: Kidney Neoplasms

Clear Filters Showing 11 to 20 of 494 articles

Multiomics in Renal Cell Carcinoma: Current Landscape and Future Directions for Precision Medicine.

Current urology reports
PURPOSE OF REVIEW: Renal cell carcinoma (RCC) is a prevalent and increasingly diagnosed malignancy associated with high mortality and recurrence rates. Traditional diagnostic and therapeutic approaches have limitations due to the disease's molecular ...

Tumor grade-titude: XGBoost radiomics paves the way for RCC classification.

European journal of radiology
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 R...

Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.

JCO clinical cancer informatics
PURPOSE: Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody ...

Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning.

Nature communications
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To a...

Interpretable Machine Learning Radiomics Model Predicts 5-year Recurrence-Free Survival in Non-metastatic Clear Cell Renal Cell Carcinoma: A Multicenter and Retrospective Cohort Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography (CT) radiomics-based interpretable machine learning (ML) model for predicting 5-year recurrence-free survival (RFS) in non-metastatic clear cell renal cell carcinoma (ccRCC).

Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study.

Academic radiology
RATIONALE AND OBJECTIVES: The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences i...

Artificial intelligence-based multimodal prediction for nuclear grading status and prognosis of clear cell renal cell carcinoma: a multicenter cohort study.

International journal of surgery (London, England)
BACKGROUND: The assessment of the International Society of Urological Pathology (ISUP) nuclear grade is crucial for the management and treatment of clear cell renal cell carcinoma (ccRCC). This study aimed to explore the value of using integrated mul...

Fine-tuned deep learning models for early detection and classification of kidney conditions in CT imaging.

Scientific reports
The kidney plays a vital role in maintaining homeostasis, but lifestyle factors and diseases can lead to kidney failures. Early detection of kidney disease is crucial for effective intervention, often challenging due to unnoticeable symptoms in the i...