AIMC Topic: Linear Models

Clear Filters Showing 41 to 50 of 579 articles

Machine learning and multiple linear regression models can predict ascorbic acid and polyphenol contents, and antioxidant activity in strawberries.

Journal of the science of food and agriculture
BACKGROUND: Strawberry is a rich source of antioxidants, including ascorbic acid (ASA) and polyphenols, which have numerous health benefits. Antioxidant content and activity are often determined manually using laboratory equipment, which is destructi...

Comparison of machine learning algorithms and multiple linear regression for live weight estimation of Akkaraman lambs.

Tropical animal health and production
This study was designed to predict the post-weaning weights of Akkaraman lambs reared on different farms using multiple linear regression and machine learning algorithms. The effect of factors the age of the dam, gender, type of lambing, enterprise, ...

SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.

Magma (New York, N.Y.)
OBJECTIVE: Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To...

Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits.

PloS one
We present a comparison of machine learning methods for the prediction of four quantitative traits in Arabidopsis thaliana. High prediction accuracies were achieved on individuals grown under standardized laboratory conditions from the 1001 Arabidops...

Analyzing the heterogenous effects of factors on high-range speeding likelihood of taxi speeders: Does explainable deep learning provides more insights than random parameter approach?

Accident; analysis and prevention
The random parameters Generalized Linear Model (GLM) is frequently used to model speeding characteristics and capture the heterogenous effects of factors. However, this statistical approach is seldom employed for prediction and generalization due to ...

Imitating the respiratory activity of the brain stem by using artificial neural networks: exploratory study on an animal model of lactic acidosis and proof of concept.

Journal of clinical monitoring and computing
Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from an animal model of...

Elevating hourly PM forecasting in Istanbul, Türkiye: Leveraging ERA5 reanalysis and genetic algorithms in a comparative machine learning model analysis.

Chemosphere
Rapid urbanization and industrialization have intensified air pollution, posing severe health risks and necessitating accurate PM predictions for effective urban air quality management. This study distinguishes itself by utilizing high-resolution ERA...

Development and Validation of Prediction Models for Incident Reversible Cognitive Frailty Based on Social-Ecological Predictors Using Generalized Linear Mixed Model and Machine Learning Algorithms: A Prospective Cohort Study.

Journal of applied gerontology : the official journal of the Southern Gerontological Society
This study aimed to develop and validate prediction models for incident reversible cognitive frailty (RCF) based on social-ecological predictors. Older adults aged ≥60 years from China Health and Retirement Longitudinal Study (CHARLS) 2011-2013 surve...

Artificial Intelligence Machine Learning Algorithms Versus Standard Linear Demographic Analysis in Predicting Implant Size of Anatomic and Reverse Total Shoulder Arthroplasty.

Journal of the American Academy of Orthopaedic Surgeons. Global research & reviews
BACKGROUND: Accurate and precise templating is paramount for anatomic total shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RSA) to enhance preoperative planning, streamline surgery, and improve implant positioning. We aimed to e...

Lag projective synchronization of discrete-time fractional-order quaternion-valued neural networks with time delays.

Neural networks : the official journal of the International Neural Network Society
This paper deals with the lag projective synchronization (LPS) problem for a class of discrete-time fractional-order quaternion-valued neural networks(DTFO QVNNs) systems with time delays. Firstly, a DTFOQVNNs system with time delay is constructed. S...