AIMC Topic: Lung Neoplasms

Clear Filters Showing 471 to 480 of 1668 articles

Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT.

European radiology experimental
BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR).

Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms.

Immunologic research
This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients from the TCGA data...

Attention pyramid pooling network for artificial diagnosis on pulmonary nodules.

PloS one
The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. Howev...

Development of a machine learning model for predicting pneumothorax risk in coaxial core needle biopsy (≤3 cm).

European journal of radiology
PURPOSE: The aim is to devise a machine learning algorithm exploiting preoperative clinical data to forecast the hazard of pneumothorax post-coaxial needle lung biopsy (CCNB), thereby informing clinical decision-making and enhancing perioperative car...

Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response.

Respiratory research
BACKGROUND: Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures.

Deep Learning Features and Metabolic Tumor Volume Based on PET/CT to Construct Risk Stratification in Non-small Cell Lung Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To build a risk stratification by incorporating PET/CT-based deep learning features and whole-body metabolic tumor volume (MTV), which was to make predictions about overall survival (OS) and progression-free survival (PFS) f...

Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: We performed this systematic review and meta-analysis to investigate the performance of ML in detecting genetic mutation status in NSCLC patients.

Cross-site validation of lung cancer diagnosis by electronic nose with deep learning: a multicenter prospective study.

Respiratory research
BACKGROUND: Although electronic nose (eNose) has been intensively investigated for diagnosing lung cancer, cross-site validation remains a major obstacle to be overcome and no studies have yet been performed.

Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduc...

Graphene and metal-organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation.

Nanoscale
Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential repla...