AIMC Topic: Lung Neoplasms

Clear Filters Showing 471 to 480 of 1623 articles

A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features.

Computers in biology and medicine
BACKGROUND: Positron emission tomography (PET) is extensively employed for diagnosing and staging various tumors, including liver cancer, lung cancer, and lymphoma. Accurate subtype classification of tumors plays a crucial role in formulating effecti...

Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Lung adenocarcinoma (LUAD) is the most common primary lung cancer and accounts for 40% of all lung cancer cases. The current gold standard for lung cancer analysis is based on the pathologists' interpretation of hematoxylin and eosin (H&E)-stained ti...

A muti-modal feature fusion method based on deep learning for predicting immunotherapy response.

Journal of theoretical biology
Immune checkpoint therapy (ICT) has greatly improved the survival of cancer patients in the past few years, but only a small number of patients respond to ICT. To predict ICT response, we developed a multi-modal feature fusion model based on deep lea...

A Deep Learning-Based Assay for Programmed Death Ligand 1 Immunohistochemistry Scoring in Non-Small Cell Lung Carcinoma: Does it Help Pathologists Score?

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Several studies have developed various artificial intelligence (AI) models for immunohistochemical analysis of programmed death ligand 1 (PD-L1) in patients with non-small cell lung carcinoma; however, none have focused on specific ways by which AI-a...

Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer.

Frontiers in public health
BACKGROUND AND OBJECTIVE: Accurately predicting the extent of lung tumor infiltration is crucial for improving patient survival and cure rates. This study aims to evaluate the application value of an improved CT index combined with serum biomarkers, ...

Validated machine learning tools to distinguish immune checkpoint inhibitor, radiotherapy, COVID-19 and other infective pneumonitis.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND: Pneumonitis is a well-described, potentially disabling, or fatal adverse effect associated with both immune checkpoint inhibitors (ICI) and thoracic radiotherapy. Accurate differentiation between checkpoint inhibitor pneumonitis (CIP) rad...

Machine learning-driven prediction of brain metastasis in lung adenocarcinoma using miRNA profile and target gene pathway analysis of an mRNA dataset.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
BACKGROUND: Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between th...

Boosting predictive models and augmenting patient data with relevant genomic and pathway information.

Computers in biology and medicine
The recurrence of low-stage lung cancer poses a challenge due to its unpredictable nature and diverse patient responses to treatments. Personalized care and patient outcomes heavily rely on early relapse identification, yet current predictive models,...

Identification and validation of an immune-derived multiple programmed cell death index for predicting clinical outcomes, molecular subtyping, and drug sensitivity in lung adenocarcinoma.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
OBJECTIVES: Comprehensive cross-interaction of multiple programmed cell death (PCD) patterns in the patients with lung adenocarcinoma (LUAD) have not yet been thoroughly investigated.