AIMC Topic: Lung

Clear Filters Showing 61 to 70 of 982 articles

Classification of CT scan and X-ray dataset based on deep learning and particle swarm optimization.

PloS one
In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, tr...

Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Thoracic Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for lung cancer treatments. However, CBCT images often suffer from streaking artifacts an...

Automated AI-based image analysis for quantification and prediction of interstitial lung disease in systemic sclerosis patients.

Respiratory research
BACKGROUND: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are need...

DenseSeg: joint learning for semantic segmentation and landmark detection using dense image-to-shape representation.

International journal of computer assisted radiology and surgery
PURPOSE: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for se...

Interpretable COVID-19 chest X-ray detection based on handcrafted feature analysis and sequential neural network.

Computers in biology and medicine
Deep learning methods have significantly improved medical image analysis, particularly in detecting COVID-19 chest X-rays. Nonetheless, these methodologies frequently inhibit some drawbacks, such as limited interpretability, extensive computational r...

Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.

Biomedical physics & engineering express
. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.. Anatomic distances wer...

Perfusion estimation from dynamic non-contrast computed tomography using self-supervised learning and a physics-inspired U-net transformer architecture.

International journal of computer assisted radiology and surgery
PURPOSE: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times...

Diagnostic accuracy of an automated classifier for the detection of pleural effusions in patients undergoing lung ultrasound.

The American journal of emergency medicine
RATIONALE: Lung ultrasound, the most precise diagnostic tool for pleural effusions, is underutilized due to healthcare providers' limited proficiency. To address this, deep learning models can be trained to recognize pleural effusions. However, curre...

Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods.

NPJ systems biology and applications
Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learni...