AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymph Nodes

Showing 51 to 60 of 361 articles

Clear Filters

Artificial Intelligence Algorithm Can Predict Lymph Node Malignancy from Endobronchial Ultrasound Transbronchial Needle Aspiration Images for Non-Small Cell Lung Cancer.

Respiration; international review of thoracic diseases
INTRODUCTION: Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) for lung cancer staging is operator dependent, resulting in high rates of non-diagnostic lymph node (LN) samples. We hypothesized that an artificial intelligence (AI)...

Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast can...

Assessing Axillary Lymph Node Burden and Prognosis in cT1-T2 Stage Breast Cancer Using Machine Learning Methods: A Retrospective Dual-Institutional MRI Study.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Pathological axillary lymph node (pALN) burden is an important factor for treatment decision-making in clinical T1-T2 (cT1-T2) stage breast cancer. Preoperative assessment of the pALN burden and prognosis aids in the individualized select...

Explainable machine learning model for predicting paratracheal lymph node metastasis in cN0 papillary thyroid cancer.

Scientific reports
Prophylactic dissection of paratracheal lymph nodes in clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC) remains controversial. This study aims to integrate preoperative and intraoperative variables to compare traditional nomogra...

Impact of the number of dissected lymph nodes on machine learning-based prediction of postoperative lung cancer recurrence: a single-hospital retrospective cohort study.

BMJ open respiratory research
BACKGROUND: The optimal number of lymph nodes to be dissected during lung cancer surgery to minimise the postoperative recurrence risk remains undetermined. This study aimed to elucidate the impact of the number of dissected lymph nodes on the risk o...

Automatic segmentation of esophageal cancer, metastatic lymph nodes and their adjacent structures in CTA images based on the UperNet Swin network.

Cancer medicine
OBJECTIVE: To create a deep-learning automatic segmentation model for esophageal cancer (EC), metastatic lymph nodes (MLNs) and their adjacent structures using the UperNet Swin network and computed tomography angiography (CTA) images and to improve t...

Individualized prediction of non-sentinel lymph node metastasis in Chinese breast cancer patients with ≥ 3 positive sentinel lymph nodes based on machine-learning algorithms.

BMC cancer
BACKGROUND: Axillary lymph node dissection (ALND) is a standard procedure for early-stage breast cancer (BC) patients with three or more positive sentinel lymph nodes (SLNs). However, ALND can lead to significant postoperative complications without a...

Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

Journal of clinical pathology
Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine a...