AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymphoma

Showing 11 to 20 of 79 articles

Clear Filters

Preliminary study on the ability of the machine learning models based on F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma.

European journal of radiology
PURPOSE: The objective of this study was to preliminarily assess the ability of metabolic parameters and radiomics derived from F-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) to distinguish mass-forming pancreati...

A position-enhanced sequential feature encoding model for lung infections and lymphoma classification on CT images.

International journal of computer assisted radiology and surgery
PURPOSE: Differentiating pulmonary lymphoma from lung infections using CT images is challenging. Existing deep neural network-based lung CT classification models rely on 2D slices, lacking comprehensive information and requiring manual selection. 3D ...

Development and validation of machine learning models for predicting cancer-related fatigue in lymphoma survivors.

International journal of medical informatics
BACKGROUND: New cases of lymphoma are rising, and the symptom burden, like cancer-related fatigue (CRF), severely impacts the quality of life of lymphoma survivors. However, clinical diagnosis and treatment of CRF are inadequate and require enhanceme...

Innovative label-free lymphoma diagnosis using infrared spectroscopy and machine learning on tissue sections.

Communications biology
The diagnosis of lymphomas is challenging due to their diverse histological presentations and clinical manifestations. There is a need for inexpensive tools that require minimal expertise and are accessible for routine laboratories. Contrastingly, cu...

Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

Journal of clinical pathology
Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine a...