AIMC Topic: Machine Learning

Clear Filters Showing 31 to 40 of 31088 articles

Identifying and characterising asthma subgroups at high risk of severe exacerbations using machine learning and longitudinal real-world data.

BMJ health & care informatics
OBJECTIVES: To identify and characterise distinct subgroups of patients with asthma with severe acute exacerbations (AEs) by using a multistep clustering methodology that combines supervised and unsupervised machine learning.

External validation of a prediction model for disability and pain after lumbar disc herniation surgery: a prospective international registry-based cohort study.

Acta orthopaedica
BACKGROUND AND PURPOSE:  We aimed to externally validate machine learning models developed in Norway by evaluating their predictive outcome of disability and pain 12 months after lumbar disc herniation surgery in a Swedish and Danish cohort.

Machine learning-based prediction of short- and long-term mortality for shared decision-making in older hip fracture patients: the Dutch Hip Fracture Audit algorithms in 74,396 cases.

Acta orthopaedica
BACKGROUND AND PURPOSE:  Treatment-related shared decision-making (SDM) in older adults with hip fractures is complex due to the need to balance patient-specific factors such as life goals, frailty, and surgical risks. It includes considerations such...

Understanding the determinants of treated bed net use in Ethiopia: A machine learning classification approach using PMA Ethiopia 2023 survey data.

PloS one
INTRODUCTION: Malaria remains a significant public health challenge in Ethiopia, with over 7.3 million cases and 1,157 deaths reported between January 1 and October 20, 2024. Despite extensive distribution campaigns, 35% of insecticide-treated nets (...

Identification and validation of parthanatos-related genes in end-stage renal disease.

Renal failure
BACKGROUND: End-Stage Renal Disease (ESRD) is a severe chronic kidney disease with a rising global incidence, often accompanied by various complications, severely impacting patients' quality of life. Parthanatos plays a crucial role in the pathogenes...

A computational study of cardiac glycosides from Vernonia amygdalina as PI3K inhibitors for targeting HER2 positive breast cancer.

Journal of computer-aided molecular design
The PI3K/Akt pathway plays a crucial role in regulating a broad network of proteins involved in the proliferation of HER2-positive breast cancer. The ethyl acetate fraction of Vernonia amygdalina, which contains cardiac glycosides, has been shown to ...

Interpretable machine learning models for survival prediction in prostate cancer bone metastases.

Scientific reports
Prostate cancer bone metastasis (PCBM) is a highly lethal condition with limited survival. Accurate survival prediction is essential for managing these typically incurable patients. However, existing clinical models lack precision. This study seeks t...

Machine learning models to predict the zero-fragment rate and lower pole access with FANS during flexible Ureteroscopy-an EAU section of endourology study.

World journal of urology
INTRODUCTION: Suction devices such as flexible and navigable suction ureteral access sheath (FANS) are promising tools to reach the zero-fragment rate (ZFR) after flexible ureteroscopy (FURS) and laser lithotripsy. FANS could especially be useful for...

Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn's disease.

Annals of medicine
BACKGROUND: Crohn's disease (CD) is a chronic inflammatory bowel disease, with infliximab (IFX) commonly used for treatment. However, no clinically applicable model currently exists to predict the response of patients with CD to IFX therapy. Given th...

Assessing chronic obstructive pulmonary disease risk based on exhalation and cough sounds.

Biomedical engineering online
BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD), a progressively worsening respiratory condition, severely impacts patient quality of life. Early risk assessment can improve treatment outcomes and lessen healthcare burdens. How...