AIMC Topic:
Magnetic Resonance Imaging

Clear Filters Showing 1211 to 1220 of 5973 articles

Evaluation of deep learning-based reconstruction late gadolinium enhancement images for identifying patients with clinically unrecognized myocardial infarction.

BMC medical imaging
BACKGROUND: The presence of infarction in patients with unrecognized myocardial infarction (UMI) is a critical feature in predicting adverse cardiac events. This study aimed to compare the detection rate of UMI using conventional and deep learning re...

Generalizing the Enhanced-Deep-Super-Resolution Neural Network to Brain MR Images: A Retrospective Study on the Cam-CAN Dataset.

eNeuro
The Enhanced-Deep-Super-Resolution (EDSR) model is a state-of-the-art convolutional neural network suitable for improving image spatial resolution. It was previously trained with general-purpose pictures and then, in this work, tested on biomedical m...

Multimodal Brain Tumor Classification Using Convolutional Tumnet Architecture.

Behavioural neurology
The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are...

Deep-learning-based motion correction using multichannel MRI data: a study using simulated artifacts in the fastMRI dataset.

NMR in biomedicine
Deep learning presents a generalizable solution for motion correction requiring no pulse sequence modifications or additional hardware, but previous networks have all been applied to coil-combined data. Multichannel MRI data provide a degree of spati...

A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annual...

MRI-based Deep Learning Models for Preoperative Breast Volume and Density Assessment Assisting Breast Reconstruction.

Aesthetic plastic surgery
BACKGROUND: The volume of the implant is the most critical element of breast reconstruction, so it is necessary to accurately assess the preoperative volume of the healthy and affected breasts and select the appropriate implant for placement. Accurat...

Alzheimer's disease diagnosis from multi-modal data via feature inductive learning and dual multilevel graph neural network.

Medical image analysis
Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and c...

DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI.

Network (Bristol, England)
A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a ...