AIMC Topic:
Middle Aged

Clear Filters Showing 2041 to 2050 of 14408 articles

Ascertaining provider-level implicit bias in electronic health records with rules-based natural language processing: A pilot study in the case of prostate cancer.

PloS one
PURPOSE: Implicit, unconscious biases in medicine are personal attitudes about race, ethnicity, gender, and other characteristics that may lead to discriminatory patterns of care. However, there is no consensus on whether implicit bias represents a t...

Assessing the value of deep neural networks for postoperative complication prediction in pancreaticoduodenectomy patients.

PloS one
INTRODUCTION: Pancreaticoduodenectomy (PD) for patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a high risk of postoperative complications (PoCs) and risk prediction of these is therefore critical for optimal treatment plannin...

Attention-based image segmentation and classification model for the preoperative risk stratification of thyroid nodules.

World journal of surgery
BACKGROUND: Despite widespread use of standardized classification systems, risk stratification of thyroid nodules is nuanced and often requires diagnostic surgery. Genomic sequencing is available for this dilemma however, costs and access restricts g...

Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema.

Journal of biophotonics
The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and f...

Estimating cardiovascular mortality in patients with hypertension using machine learning: The role of depression classification based on lifestyle and physical activity.

Journal of psychosomatic research
PURPOSE: This study aims to harness machine learning techniques, particularly the Random Survival Forest (RSF) model, to assess the impact of depression on cardiovascular disease (CVD) mortality among hypertensive patients. A key objective is to eluc...

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Japanese journal of radiology
OBJECTIVES: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cance...

Feasibility of AI as first reader in the 4-IN-THE-LUNG-RUN lung cancer screening trial: impact on negative-misclassifications and clinical referral rate.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Lung cancer screening (LCS) with low-dose CT (LDCT) reduces lung-cancer-related mortality in high-risk individuals. AI can potentially reduce radiologist workload as first-read-filter by ruling-out negative cases. The feasibility of AI as...

Diabetes and Cataracts Development-Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study.

Medicina (Kaunas, Lithuania)
Diabetes has become a global epidemic, contributing to significant health challenges due to its complications. Among these, diabetes can affect sight through various mechanisms, emphasizing the importance of early identification and management of vi...

Deep learning radiomics on grayscale ultrasound images assists in diagnosing benign and malignant of BI-RADS 4 lesions.

Scientific reports
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breas...

Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models.

Scientific reports
Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and miti...