AI Medical Compendium Topic:
Middle Aged

Clear Filters Showing 521 to 530 of 13636 articles

Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms.

Scientific reports
Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening in at-risk populations and detection of early cancer has the potential to significantly alter sur...

Fostering creativity-nurturing behaviors among nurse educators: Investigating the interplay between evidence-based practice climate and artificial intelligence competence self-efficacy.

Nurse education today
BACKGROUND: Fostering creativity in nursing education is essential for equipping students with critical thinking and problem-solving skills. Nurse educators play a pivotal role in nurturing creativity among nursing students, yet their effectiveness i...

Artificial neural networks applied to somatosensory evoked potentials for migraine classification.

The journal of headache and pain
BACKGROUND: Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including reduced thalamocortical activity...

Deep learning prediction of mammographic breast density using screening data.

Scientific reports
This study investigated a series of deep learning (DL) models for the objective assessment of four categories of mammographic breast density (e.g., fatty, scattered, heterogeneously dense, and extremely dense). A retrospective analysis was conducted ...

Psychological Factors Influencing Appropriate Reliance on AI-enabled Clinical Decision Support Systems: Experimental Web-Based Study Among Dermatologists.

Journal of medical Internet research
BACKGROUND: Artificial intelligence (AI)-enabled decision support systems are critical tools in medical practice; however, their reliability is not absolute, necessitating human oversight for final decision-making. Human reliance on such systems can ...

Greenspace and depression incidence in the US-based nationwide Nurses' Health Study II: A deep learning analysis of street-view imagery.

Environment international
BACKGROUND: Greenspace exposure is associated with lower depression risk. However, most studies have measured greenspace exposure using satellite-based vegetation indices, leading to potential exposure misclassification and limited policy relevance. ...

Leveraging Artificial Intelligence to Uncover Symptom Burden in Palliative Care: Analysis of Nonscheduled Visits Using a Phi-3 Small Language Model.

JCO global oncology
PURPOSE: This study aimed to differentiate nonscheduled visits (NSVs) in an outpatient palliative care setting that are driven by or accompanied by uncontrolled symptoms from those that are administrative or routine, such as prescription refills and ...

Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care.

JCO clinical cancer informatics
PURPOSE: The use of real-world data (RWD) in oncology is becoming increasingly important for clinical decision making and tailoring treatment. Despite the significant success of targeted therapy and immunotherapy in advanced melanoma, substantial var...

A semantic segmentation model for automatic precise identification of pituitary microadenomas with preoperative MRI.

Neuroradiology
PURPOSE: Magnetic resonance imaging (MRI) is an essential technique for diagnosing pituitary adenomas; however, it is also challenging for neurosurgeons to use it to precisely identify some types of microadenomas. A novel neural network model was dev...