BACKGROUND: The incorporation of artificial intelligence (AI) into point-of-care ultrasound (POCUS) platforms has rapidly increased. The number of B-lines present on lung ultrasound (LUS) serve as a useful tool for the assessment of pulmonary congest...
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.
BACKGROUND: Cardiopulmonary exercise testing (CPET) is used in the evaluation of unexplained dyspnea. However, its interpretation requires expertise that is often not available. We aim to evaluate the utility of ChatGPT (GPT) in interpreting CPET res...
The Artificial Intelligence Patient Librarian (AIPL) was designed to meet the psychosocial and supportive care needs of Metastatic Breast Cancer (MBC) patients with HR+/HER2- subtypes. AIPL provides conversational patient education, answers user ques...
BACKGROUND: To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.
Clinical oncology (Royal College of Radiologists (Great Britain))
Mar 1, 2025
AIMS: To assess geometric accuracy and dosimetric impact of a deep learning segmentation (DLS) model on a large, diverse dataset of head and neck cancer (HNC) patients treated with intensity-modulated proton therapy (IMPT).
This study aims to develop a deep learning model using high-resolution vessel wall imaging (HR-VWI) to differentiate symptom-related intracranial and extracranial plaques, which is crucial for stroke treatment and prevention. We retrospectively analy...
This study aims to evaluate the clinical characteristics and biochemical parameters of hemophagocytic lymphohistiocytosis (HLH) patients to predict 30-day mortality. Parameters analyzed include lymphocyte count (L), platelet count (PLT), total protei...
OBJECTIVES: Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.
PURPOSE: Lumbosacral nerve root anomalies are relatively rare but can be a risk factor for intraoperative nerve injury. However, it is often difficult to evaluate them with preoperative imaging. We developed a software that automatically generates th...