AIMC Topic: Multiomics

Clear Filters Showing 131 to 140 of 261 articles

Integrated multi-omics analysis and machine learning developed diagnostic markers and prognostic model based on Efferocytosis-associated signatures for septic cardiomyopathy.

Clinical immunology (Orlando, Fla.)
Septic cardiomyopathy (SCM) is characterized by an abnormal inflammatory response and increased mortality. The role of efferocytosis in SCM is not well understood. We used integrated multi-omics analysis to explore the clinical and genetic roles of e...

Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Functional & integrative genomics
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 1...

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

International journal of molecular sciences
(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor gene...

Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma.

Aging
Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, undersc...

Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiother...

NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Breast cancer is a multifaceted condition characterized by diverse features and a substantial mortality rate, underscoring the imperative for timely detection and intervention. The utilization of multi-omics data has gained ...

Machine learning and integrative multi-omics network analysis for survival prediction in acute myeloid leukemia.

Computers in biology and medicine
BACKGROUND: Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults and the fifth most common malignancy in children, necessitating advanced technologies for outcome prediction.

A Quadruple Revolution: Deciphering Biological Complexity with Artificial Intelligence, Multiomics, Precision Medicine, and Planetary Health.

Omics : a journal of integrative biology
A quiet quadruple revolution has been in the making in systems science with convergence of (1) artificial intelligence, machine learning, and other digital technologies; (2) multiomics big data integration; (3) growing interest in the "variability sc...

AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.

Computers in biology and medicine
Integration analysis of cancer multi-omics data for pan-cancer classification has the potential for clinical applications in various aspects such as tumor diagnosis, analyzing clinically significant features, and providing precision medicine. In thes...

Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures.

Analytical chemistry
The metabolic signature identification of colorectal cancer is critical for its early diagnosis and therapeutic approaches that will significantly block cancer progression and improve patient survival. Here, we combined an untargeted metabolic analys...