AIMC Topic: Mutation

Clear Filters Showing 21 to 30 of 636 articles

A systematic evaluation of the language-of-viral-escape model using multiple machine learning frameworks.

Journal of the Royal Society, Interface
Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circu...

Deep learning radiopathomics predicts targeted therapy sensitivity in EGFR-mutant lung adenocarcinoma.

Journal of translational medicine
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...

Artificial intelligence networks for assessing the prognosis of gastrointestinal cancer to immunotherapy based on genetic mutation features: a systematic review and meta-analysis.

BMC gastroenterology
BACKGROUND AND AIM: Artificial intelligence (AI) networks offer significant potential for predicting immunotherapy outcomes in gastrointestinal cancers by analyzing genetic mutation profiles. Their application in prognosis remains underexplored. This...

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Machine learning assessment of zoonotic potential in avian influenza viruses using PB2 segment.

BMC genomics
BACKGROUND: Influenza A virus (IAV) is a major global health threat, causing seasonal epidemics and occasional pandemics. Particularly, Influenza A viruses from avian species pose significant zoonotic threats, with PB2 adaptation serving as a critica...

Prediction of Adeno-Associated Virus Fitness with a Protein Language-Based Machine Learning Model.

Human gene therapy
Adeno-associated virus (AAV)-based therapeutics have the potential to transform the lives of patients by delivering one-time treatments for a variety of diseases. However, a critical challenge to their widespread adoption and distribution is the high...

TET2 gene mutation status associated with poor prognosis of transition zone prostate cancer: a retrospective cohort study based on whole exome sequencing and machine learning models.

Frontiers in endocrinology
BACKGROUND: Prostate cancer (PCa) in the transition zone (TZ) is uncommon and often poses challenges for early diagnosis, but its genomic determinants and therapeutic vulnerabilities remain poorly characterized.

Deep learning tools predict variants in disordered regions with lower sensitivity.

BMC genomics
BACKGROUND: The recent AI breakthrough of AlphaFold2 has revolutionized 3D protein structural modeling, proving crucial for protein design and variant effects prediction. However, intrinsically disordered regions-known for their lack of well-defined ...

Enhancing the understandings on SARS-CoV-2 main protease (M) mutants from molecular dynamics and machine learning.

International journal of biological macromolecules
While star drugs like Paxlovid have shown remarkable performance in combating SARS-CoV-2, we still face serious challenges such as viral mutants and resistance. In this study, we employ a computational framework combining molecular dynamics (MD) simu...

Integrative Multi-Omics Analysis Reveals Molecular Subtypes of Ovarian Cancer and Constructs Prognostic Models.

Journal of immunotherapy (Hagerstown, Md. : 1997)
Ovarian cancer (OV) remains the most lethal gynecological malignancy. The aim of this study was to identify molecular subtypes of OV through integrative multi-omics analysis and construct machine learning-based prognostic models for predicting the ef...