AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mutation

Showing 21 to 30 of 596 articles

Clear Filters

Brain tumor intelligent diagnosis based on Auto-Encoder and U-Net feature extraction.

PloS one
Preoperative classification of brain tumors is critical to developing personalized treatment plans, however existing classification methods rely on manual intervention and often have problems with efficiency and accuracy, which may lead to misdiagnos...

[Exploration of the Predictive Value of Peripheral Blood-related Indicators for EGFR 
Mutations and Prognosis in Non-small Cell Lung Cancer Using Machine Learning].

Zhongguo fei ai za zhi = Chinese journal of lung cancer
BACKGROUND: Epidermal growth factor receptor (EGFR) sensitive mutation is one of the effective targets of targeted therapy for non-small cell lung cancer (NSCLC). However, due to the difficulty of obtaining some primary tissues and the economic facto...

Development and validation of a machine learning prognostic model based on an epigenomic signature in patients with pancreatic ductal adenocarcinoma.

International journal of medical informatics
BACKGROUND: In Pancreatic Ductal Adenocarcinoma (PDAC), current prognostic scores are unable to fully capture the biological heterogeneity of the disease. While some approaches investigating the role of multi-omics in PDAC are emerging, the analysis ...

SGCLMD: Signed graph-based contrastive learning model for predicting somatic mutation-drug association.

Computers in biology and medicine
Somatic mutations could influence critical cellular processes, leading to uncontrolled cell growth and tumor formation. Understanding the intricate interactions between somatic mutations and drugs was crucial for advancing our knowledge of the underl...

Enhanced diagnosis of multi-drug-resistant microbes using group association modeling and machine learning.

Nature communications
New solutions are needed to detect genotype-phenotype associations involved in microbial drug resistance. Herein, we describe a Group Association Model (GAM) that accurately identifies genetic variants linked to drug resistance and mitigates false-po...

A fusion model to predict the survival of colorectal cancer based on histopathological image and gene mutation.

Scientific reports
Colorectal cancer (CRC) is a prevalent gastrointestinal tumor worldwide with high morbidity and mortality. Predicting the survival of CRC patients not only enhances understanding of their life expectancies but also aids clinicians in making informed ...

Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial.

Nature communications
Anti-angiogenic (AA) therapy is a cornerstone of metastatic clear cell renal cell carcinoma (ccRCC) treatment, but not everyone responds, and predictive biomarkers are lacking. CD31, a marker of vasculature, is insufficient, and the Angioscore, an RN...

DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants.

BMC bioinformatics
BACKGROUND: A significant challenge in precision medicine is confidently identifying mutations detected in sequencing processes that play roles in disease treatment or diagnosis. Furthermore, the lack of representativeness of single nucleotide varian...

Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC cancer
BACKGROUND: Melanoma (SKCM) is an extremely aggressive form of cancer, characterized by high mortality rates, frequent metastasis, and limited treatment options. Our study aims to identify key target genes and enhance the diagnostic accuracy of melan...