AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Invasiveness

Showing 41 to 50 of 171 articles

Clear Filters

Multi-transcriptomics analysis of microvascular invasion-related malignant cells and development of a machine learning-based prognostic model in hepatocellular carcinoma.

Frontiers in immunology
BACKGROUND: Microvascular invasion (MVI) stands as a pivotal pathological hallmark of hepatocellular carcinoma (HCC), closely linked to unfavorable prognosis, early recurrence, and metastatic progression. However, the precise mechanistic underpinning...

Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model.

European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
OBJECTIVES: Radiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC)...

The role of radiomics for predicting of lymph-vascular space invasion in cervical cancer patients based on artificial intelligence: a systematic review and meta-analysis.

Journal of gynecologic oncology
The primary aim of this study was to conduct a methodical examination and assessment of the prognostic efficacy exhibited by magnetic resonance imaging (MRI)-derived radiomic models concerning the preoperative prediction of lymph-vascular space infil...

Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...

A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
PURPOSE: To evaluate lymphovascular invasion (LVI) in breast cancer by comparing the diagnostic performance of preoperative multimodal magnetic resonance imaging (MRI)-based radiomics and deep-learning (DL) models.

Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer.

Scientific reports
To retrospectively assess the effectiveness of deep learning (DL) model, based on breast magnetic resonance imaging (MRI), in predicting preoperative lymphovascular invasion (LVI) status in patients diagnosed with invasive breast cancer who have nega...

Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

Journal of imaging informatics in medicine
This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retr...

Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma From Multi-Sequence Magnetic Resonance Imaging Based on Deep Fusion Representation Learning.

IEEE journal of biomedical and health informatics
Recent studies have identified microvascular invasion (MVI) as the most vital independent biomarker associated with early tumor recurrence. With advancements in medical technology, several computational methods have been developed to predict preopera...