The Ki67 score is a crucial prognostic biomarker for neuroendocrine tumors, but its manual assessment is labor-intensive, requiring the counting of 500-2,000 cells in hotspots. Digital image analysis could streamline this process, yet few comprehensi...
This study aims to enhance the dosimetry accuracy in I planar imaging by utilizing a single oblique view and Monte Carlo (MC) validated dose point kernels (DPKs) alongside the integration of artificial intelligence (AI) for accurate dose prediction w...
Posterior pituitary tumors (PPTs) are rare neoplasms, but easily misdiagnosed as pituitary neuroendocrine tumor (PitNET) and craniopharyngioma. This study aimed to differentiate PPTs from PitNET and craniopharyngioma using a machine learning method b...
BACKGROUND: Some nonfunctioning pituitary neuroendocrine tumor (NFPitNET) can show invasive growth, which increases the difficulty of surgery and indicates a poor prognosis. However, the molecular mechanism related to invasiveness remains to be furth...
Advancements in Artificial Intelligence (AI) are driving a paradigm shift in the field of medical diagnostics, integrating new developments into various aspects of the clinical workflow. Neuroendocrine neoplasms are a diverse and heterogeneous group ...
To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrosp...
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms that include tumors with different histomorphologic characteristics that can be correlated to sub-categories with different prognoses. In addition to the WHO grading sc...
OBJECTIVES: The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endoscopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).
Neuroendocrine neoplasms (NENs) arise from diffuse neuroendocrine cells and are categorized as either well-differentiated and less proliferative Neuroendocrine Tumors (NETs), divided into low (G1), middle (G2), and high grades (G3), or poorly differe...
This study aimed to construct and assess a machine-learning algorithm designed to forecast survival rates and risk stratification for patients with gastric neuroendocrine neoplasms (gNENs) after diagnosis. Data on patients with gNENs were extracted a...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.