AIMC Topic: Plaque, Atherosclerotic

Clear Filters Showing 31 to 40 of 143 articles

Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions.

Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions
BACKGROUND: Fractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to car...

Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography.

Circulation. Cardiovascular imaging
BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid athero...

Radiomics and artificial intelligence: General notions and applications in the carotid vulnerable plaque.

European journal of radiology
Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary to...

Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort.

The international journal of cardiovascular imaging
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascu...

A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images.

Vascular
ObjectivesAssessment of plaque stenosis severity allows better management of carotid source of stroke. Our objective is to create a deep learning (DL) model to segment carotid intima-media thickness and plaque and further automatically calculate plaq...

A comparative analysis of deep learning-based location-adaptive threshold method software against other commercially available software.

The international journal of cardiovascular imaging
Automatic segmentation of the coronary artery using coronary computed tomography angiography (CCTA) images can facilitate several analyses related to coronary artery disease (CAD). Accurate segmentation of the lumen or plaque region is one of the mos...