AIMC Topic: Polymorphism, Single Nucleotide

Clear Filters Showing 81 to 90 of 396 articles

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.

Nature medicine
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (T...

Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity.

Molecular phylogenetics and evolution
While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversit...

Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease.

Nature genetics
Coronary artery disease (CAD) exists on a spectrum of disease represented by a combination of risk factors and pathogenic processes. An in silico score for CAD built using machine learning and clinical data in electronic health records captures disea...

Unraveling the genetic and molecular landscape of sepsis and acute kidney injury: A comprehensive GWAS and machine learning approach.

International immunopharmacology
OBJECTIVES: This study aimed to explore the underlying mechanisms of sepsis and acute kidney injury (AKI), including sepsis-associated AKI (SA-AKI), a frequent complication in critically ill sepsis patients.

Prediction of adverse drug reactions due to genetic predisposition using deep neural networks.

Molecular informatics
Drug development is a long and costly process, often limited by the toxicity and adverse drug reactions (ADRs) caused by drug candidates. Even on the market, some drugs can cause strong ADRs that can vary depending on an individual polymorphism. The ...

Integrating Bioinformatics and Machine Learning for Genomic Prediction in Chickens.

Genes
Genomic prediction plays an increasingly important role in modern animal breeding, with predictive accuracy being a crucial aspect. The classical linear mixed model is gradually unable to accommodate the growing number of target traits and the increa...

DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development.

HGG advances
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although seve...

Stacked neural network for predicting polygenic risk score.

Scientific reports
In recent years, the utility of polygenic risk scores (PRS) in forecasting disease susceptibility from genome-wide association studies (GWAS) results has been widely recognised. Yet, these models face limitations due to overfitting and the potential ...

Recurrent neural network for predicting absence of heterozygosity from low pass WGS with ultra-low depth.

BMC genomics
BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequenci...

Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning.

PloS one
To enable personalized medicine, it is important yet highly challenging to accurately predict disease-causing mutations in target proteins at high throughput. Previous computational methods have been developed using evolutionary information in combin...