AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1331 to 1340 of 2212 articles

Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke.

Computers in biology and medicine
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role...

A speckle-tracking strain-based artificial neural network model to differentiate cardiomyopathy type.

Scandinavian cardiovascular journal : SCJ
In heart failure, invasive angiography is often employed to differentiate ischaemic from non-ischaemic cardiomyopathy. We aim to examine the predictive value of echocardiographic strain features alone and in combination with other features to differ...

Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms.

World neurosurgery
BACKGROUND: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurologic symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorit...

Predicting diabetes second-line therapy initiation in the Australian population via time span-guided neural attention network.

PloS one
INTRODUCTION: The first line of treatment for people with Diabetes mellitus is metformin. However, over the course of the disease metformin may fail to achieve appropriate glycemic control, and a second-line therapy may become necessary. In this pape...

A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging.

European radiology experimental
BACKGROUND: To develop a supervised machine learning (ML) algorithm predicting above- versus below-median overall survival (OS) from diffusion-weighted imaging-derived radiomic features in patients with pancreatic ductal adenocarcinoma (PDAC).

Deep learning analysis of breast MRIs for prediction of occult invasive disease in ductal carcinoma in situ.

Computers in biology and medicine
PURPOSE: To determine whether deep learning-based algorithms applied to breast MR images can aid in the prediction of occult invasive disease following the diagnosis of ductal carcinoma in situ (DCIS) by core needle biopsy.

Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECT: Ischemic stroke readmission within 90 days of hospital discharge is an important quality of care metric. The readmission rates of ischemic stroke patients are usually higher than those of patients with other chronic diseases. Our aim was to i...

Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning.

Medical image analysis
CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke. Conventional perfusion analysis performs a deconvolution of the measurements and thresholds the perfusion parameters to determine the tissue status. We pursue a data-d...