AIMC Topic: Predictive Value of Tests

Clear Filters Showing 301 to 310 of 2184 articles

Patient-Specific Myocardial Infarction Risk Thresholds From AI-Enabled Coronary Plaque Analysis.

Circulation. Cardiovascular imaging
BACKGROUND: Plaque quantification from coronary computed tomography angiography has emerged as a valuable predictor of cardiovascular risk. Deep learning can provide automated quantification of coronary plaque from computed tomography angiography. We...

Machine Learning Algorithm to Predict Atrial Fibrillation Using Serial 12-Lead ECGs Based on Left Atrial Remodeling.

Journal of the American Heart Association
BACKGROUND: We hypothesized that analysis of serial ECGs could predict new-onset atrial fibrillation (AF) more accurately than analysis of a single ECG by detecting the subtle cardiac remodeling that occurs immediately before AF occurrence. Our aim i...

Deep Learning Virtual Contrast-Enhanced T1 Mapping for Contrast-Free Myocardial Extracellular Volume Assessment.

Journal of the American Heart Association
BACKGROUND: The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracel...

Predicting Intra- and Postpartum Hemorrhage through Artificial Intelligence.

Medicina (Kaunas, Lithuania)
: Intra/postpartum hemorrhage stands as a significant obstetric emergency, ranking among the top five leading causes of maternal mortality. The aim of this study was to assess the predictive performance of four machine learning algorithms for the pre...

Prediction of short-term adverse clinical outcomes of acute pulmonary embolism using conventional machine learning and deep Learning based on CTPA images.

Journal of thrombosis and thrombolysis
To explore the predictive value of traditional machine learning (ML) and deep learning (DL) algorithms based on computed tomography pulmonary angiography (CTPA) images for short-term adverse outcomes in patients with acute pulmonary embolism (APE). T...

Efficacy of a whole slide image-based prediction model for lymph node metastasis in T1 colorectal cancer: A systematic review.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Accurate stratification of the risk of lymph node metastasis (LNM) following endoscopic resection of submucosal invasive (T1) colorectal cancer (CRC) is imperative for determining the necessity for additional surgery. In this syst...

Acute cholecystitis diagnosis in the emergency department: an artificial intelligence-based approach.

Langenbeck's archives of surgery
OBJECTIVES: This study aimed to assess the diagnostic performance of a support vector machine (SVM) algorithm for acute cholecystitis and evaluate its effectiveness in accurately diagnosing this condition.

Machine Learning-Enabled Fuhrman Grade in Clear-cell Renal Carcinoma Prediction Using Two-dimensional Ultrasound Images.

Ultrasound in medicine & biology
OBJECTIVE: Accurate assessment of Fuhrman grade is crucial for optimal clinical management and personalized treatment strategies in patients with clear cell renal cell carcinoma (CCRCC). In this study, we developed a predictive model using ultrasound...