AIMC Topic: Predictive Value of Tests

Clear Filters Showing 71 to 80 of 2183 articles

Automated Identification of Stroke Thrombolysis Contraindications from Synthetic Clinical Notes: A Proof-of-Concept Study.

Cerebrovascular diseases extra
INTRODUCTION: Timely thrombolytic therapy improves outcomes in acute ischemic stroke. Manual chart review to screen for thrombolysis contraindications may be time-consuming and prone to errors. We developed and tested a large language model (LLM)-bas...

A computed tomography angiography-based radiomics model for prognostic prediction of endovascular abdominal aortic repair.

International journal of cardiology
OBJECTIVE: This study aims to develop a radiomics machine learning (ML) model that uses preoperative computed tomography angiography (CTA) data to predict the prognosis of endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) patien...

Risk of bias assessment of post-stroke mortality machine learning predictive models: Systematic review.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke is a major cause of mortality and permanent disability worldwide. Precise prediction of post-stroke mortality is essential for guiding treatment decisions and rehabilitation planning. The ability of Machine learning models to proce...

Artificial Intelligence-Assisted Capsule Endoscopy Versus Conventional Capsule Endoscopy for Detection of Small Bowel Lesions: A Systematic Review and Meta-Analysis.

Journal of gastroenterology and hepatology
BACKGROUND: Capsule endoscopy (CE) is a valuable tool used in the diagnosis of small intestinal lesions. The study aims to systematically review the literature and provide a meta-analysis of the diagnostic accuracy, specificity, sensitivity, and nega...

Prediction of Chemotherapy Response in Locally Advanced Breast Cancer Patients at Pre-Treatment Using CT Textural Features and Machine Learning: Comparison of Feature Selection Methods.

Tomography (Ann Arbor, Mich.)
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...

Querying the capability of the post-HoLEP endoscopic aspect of the membranous urethral mucosa in predicting urinary incontinence: a prospective AI-based analysis.

World journal of urology
INTRODUCTION: Transient stress urinary incontinence (SUI) after holmium laser enucleation of prostate (HoLEP) is commonly linked to intraoperative injury of the external urethral sphincter (EUS). We assessed the reliability of the post-HoLEP endoscop...

Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.

The international journal of cardiovascular imaging
Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for...