AIMC Topic: Predictive Value of Tests

Clear Filters Showing 881 to 890 of 2210 articles

Survival prognostic factors in patients with acute myeloid leukemia using machine learning techniques.

PloS one
This paper identifies prognosis factors for survival in patients with acute myeloid leukemia (AML) using machine learning techniques. We have integrated machine learning with feature selection methods and have compared their performances to identify ...

A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.

Acta cytologica
Morphological analysis of the bone marrow is an essential step in the diagnosis of hematological disease. The conventional analysis of bone marrow smears is performed under a manual microscope, which is labor-intensive and subject to interobserver va...

Quick Annotator: an open-source digital pathology based rapid image annotation tool.

The journal of pathology. Clinical research
Image-based biomarker discovery typically requires accurate segmentation of histologic structures (e.g. cell nuclei, tubules, and epithelial regions) in digital pathology whole slide images (WSIs). Unfortunately, annotating each structure of interest...

Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study.

Virchows Archiv : an international journal of pathology
The level of human epidermal growth factor receptor-2 (HER2) protein and gene expression in breast cancer is an essential factor in judging the prognosis of breast cancer patients. Several investigations have shown high intraobserver and interobserve...

Predicting survival in heart failure: a risk score based on machine-learning and change point algorithm.

Clinical research in cardiology : official journal of the German Cardiac Society
OBJECTIVE: Machine learning (ML) algorithm can improve risk prediction because ML can select features and segment continuous variables effectively unbiased. We generated a risk score model for mortality with ML algorithms in East-Asian patients with ...

CRP (C-Reactive Protein) in Outcome Prediction After Subarachnoid Hemorrhage and the Role of Machine Learning.

Stroke
BACKGROUND AND PURPOSE: Outcome prediction after aneurysmal subarachnoid hemorrhage (aSAH) is challenging. CRP (C-reactive protein) has been reported to be associated with outcome, but it is unclear if this is independent of other predictors and appl...