AI Medical Compendium Topic:
Prognosis

Clear Filters Showing 601 to 610 of 3156 articles

Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Precise evaluation of pathological complete response (pCR) is essential for determining the prognosis of patients with locally advanced rectal cancer (LARC) undergoing neoadjuvant chemoradiotherapy (NCRT) and can offer clues for the selec...

Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI.

Journal of applied clinical medical physics
PURPOSE: In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM...

Interpretable machine learning model for predicting the prognosis of antibody positive autoimmune encephalitis patients.

Journal of affective disorders
OBJECTIVE: The objective was to utilize nine machine learning (ML) methods to predict the prognosis of antibody positive autoimmune encephalitis (AE) patients.

Machine learning and statistical models to predict all-cause mortality in type 2 diabetes: Results from the UK Biobank study.

Diabetes & metabolic syndrome
AIMS: This study aims to compare the performance of contemporary machine learning models with statistical models in predicting all-cause mortality in patients with type 2 diabetes mellitus and to develop a user-friendly mortality risk prediction tool...

Prognostic insights after surgery for advances in understanding signet ring cell gastric cancer: a machine learning approach.

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
BACKGROUND: Signet ring cell (SRC) gastric carcinoma is traditionally associated with a poor prognosis. However, the literature has presented contradictory results. Linear models are the standard statistical tools typically used to study these condit...

Prognosis of major bleeding based on residual variables and machine learning for critical patients with upper gastrointestinal bleeding: A multicenter study.

Journal of critical care
BACKGROUND: Upper gastrointestinal bleeding (UGIB) is a significant cause of morbidity and mortality worldwide. This study investigates the use of residual variables and machine learning (ML) models for predicting major bleeding in patients with seve...

Preoperative markers for identifying CT ≤2 cm solid nodules of lung adenocarcinoma based on image deep learning.

Thoracic cancer
BACKGROUND: The solid pattern is a highly malignant subtype of lung adenocarcinoma. In the current era of transitioning from lobectomy to sublobar resection for the surgical treatment of small lung cancers, preoperative identification of this subtype...

A machine learning approach in a monocentric cohort for predicting primary refractory disease in Diffuse Large B-cell lymphoma patients.

PloS one
INTRODUCTION: Primary refractory disease affects 30-40% of patients diagnosed with DLBCL and is a significant challenge in disease management due to its poor prognosis. Predicting refractory status could greatly inform treatment strategies, enabling ...