AIMC Topic: Protein Interaction Maps

Clear Filters Showing 61 to 70 of 375 articles

A synthetic protein-level neural network in mammalian cells.

Science (New York, N.Y.)
Artificial neural networks provide a powerful paradigm for nonbiological information processing. To understand whether similar principles could enable computation within living cells, we combined de novo-designed protein heterodimers and engineered v...

Integration of biological data via NMF for identification of human disease-associated gene modules through multi-label classification.

PloS one
Proteins associated with multiple diseases often interact, forming disease modules that are critical for understanding disease mechanisms. This study integrates protein-protein interactions (PPIs) and Gene Ontology data using non-negative matrix fact...

Mapping the functional network of human cancer through machine learning and pan-cancer proteogenomics.

Nature cancer
Large-scale omics profiling has uncovered a vast array of somatic mutations and cancer-associated proteins, posing substantial challenges for their functional interpretation. Here we present a network-based approach centered on FunMap, a pan-cancer f...

An End-to-End Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction.

IEEE/ACM transactions on computational biology and bioinformatics
Protein-protein interactions (PPIs) are essential to understanding cellular mechanisms, signaling networks, disease processes, and drug development, as they represent the physical contacts and functional associations between proteins. Recent advances...

RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction.

IEEE/ACM transactions on computational biology and bioinformatics
Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentr...

MDMNI-DGD: A novel graph neural network approach for druggable gene discovery based on the integration of multi-omics data and the multi-view network.

Computers in biology and medicine
Accurately predicting druggable genes is of paramount importance for enhancing the efficacy of targeted therapies, reducing drug-related toxicities and improving patients' survival rates. Nevertheless, accurately predicting candidate cancer-druggable...

Machine learning approaches for predicting craniofacial anomalies with graph neural networks.

Computational biology and chemistry
This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, mul...

Identification of immune-related mitochondrial metabolic disorder genes in septic shock using bioinformatics and machine learning.

Hereditas
PURPOSE: Mitochondria are involved in septic shock and inflammatory response syndrome, which severely affects the life security of patients. It is necessary to recognize and explore the immune-mitochondrial genes in septic shock.

Leveraging Bioinformatics and Machine Learning for Identifying Prognostic Biomarkers and Predicting Clinical Outcomes in Lung Adenocarcinoma.

Genes
There exist significant challenges for lung adenocarcinoma (LUAD) due to its poor prognosis and limited treatment options, particularly in the advanced stages. It is crucial to identify genetic biomarkers for improving outcome predictions and guidin...