AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 301 to 310 of 520 articles

Clear Filters

Development and benchmarking of a Deep Learning-based MRI-guided gross tumor segmentation algorithm for Radiomics analyses in extremity soft tissue sarcomas.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND: Volume of interest (VOI) segmentation is a crucial step for Radiomics analyses and radiotherapy (RT) treatment planning. Because it can be time-consuming and subject to inter-observer variability, we developed and tested a Deep Learning-b...

A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics.

Computers in biology and medicine
Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. F...

Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma.

Computers in biology and medicine
BACKGROUND: Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radi...

Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis.

European journal of radiology
PURPOSE: To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC).

A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer.

La Radiologia medica
OBJECTIVE: To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal g...

Combined radiomics nomogram of different machine learning models for preoperative distinguishing intraspinal schwannomas and meningiomas: a multicenter and comparative study.

Clinical radiology
AIMS: The objective of our study was to establish and verify a novel combined model based on multiparameter magnetic resonance imaging (MRI) radiomics and clinical features to distinguish intraspinal schwannomas from meningiomas.

Automated Analysis of Split Kidney Function from CT Scans Using Deep Learning and Delta Radiomics.

Journal of endourology
Differential kidney function assessment is an important part of preoperative evaluation of various urological interventions. It is obtained through dedicated nuclear medical imaging and is not yet implemented through conventional Imaging. We assess...

Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data.

Scientific reports
We developed artificial intelligence models to predict the brain metastasis (BM) treatment response after stereotactic radiosurgery (SRS) using longitudinal magnetic resonance imaging (MRI) data and evaluated prediction accuracy changes according to ...