International journal of medical informatics
Apr 26, 2024
OBJECTIVES: Adherent perinephric fat (APF) poses significant challenges to surgical procedures. This study aimed to evaluate the usefulness of machine learning algorithms combined with MRI-based radiomics features for predicting the presence of APF.
To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques.The primary focus is on develo...
Diagnostic and interventional radiology (Ankara, Turkey)
Apr 24, 2024
PURPOSE: Spontaneous intracerebral hemorrhage (ICH) is the most severe form of stroke. The timely assessment of early hematoma enlargement and its proper treatment are of great significance in curbing the deterioration and improving the prognosis of ...
RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) statu...
Journal of imaging informatics in medicine
Apr 23, 2024
Radiomics features have been widely used as novel biomarkers in the diagnosis of various diseases, but whether radiomics features derived from hematoxylin and eosin (H&E) images can evaluate muscle atrophy has not been studied. Therefore, this study ...
International journal of medical informatics
Apr 23, 2024
BACKGROUND: Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to...
OBJECTIVES: Musculoskeletal (MSK) tumors, given their high mortality rate and heterogeneity, necessitate precise examination and diagnosis to guide clinical treatment effectively. Magnetic resonance imaging (MRI) is pivotal in detecting MSK tumors, a...
OBJECTIVES: To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT).
RATIONALE AND OBJECTIVES: To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) le...
OBJECTIVE: FDG PET imaging plays a crucial role in the evaluation of demented patients by assessing regional cerebral glucose metabolism. In recent years, both radiomics and deep learning techniques have emerged as powerful tools for extracting valua...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.