AIMC Topic: Radiomics

Clear Filters Showing 461 to 470 of 622 articles

Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature.

European radiology
OBJECTIVES: To develop and assess a radiomics-based prediction model for distinguishing T2/T3 staging of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) METHODS: A total of 118 patients with pathologically proven LHSCC were enrolled in t...

Deep learning-radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients.

Scientific reports
This study focused on a novel strategy that combines deep learning and radiomics to predict epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer (NSCLC) using computed tomography (CT). A total of 1280 patients...

Enhancing Ki-67 Prediction in Breast Cancer: Integrating Intratumoral and Peritumoral Radiomics From Automated Breast Ultrasound via Machine Learning.

Academic radiology
RATIONALE AND OBJECTIVES: Traditional Ki-67 evaluation in breast cancer (BC) via core needle biopsy is limited by repeatability and heterogeneity. The automated breast ultrasound system (ABUS) offers reproducibility but is constrained to morphologica...

Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma.

Scientific reports
To examine the comparative robustness of computed tomography (CT)-based conventional radiomics and deep-learning convolutional neural networks (CNN) to predict overall survival (OS) in HCC patients. Retrospectively, 114 HCC patients with pretherapeut...

Identification of high-risk population of pneumoconiosis using deep learning segmentation of lung 3D images and radiomics texture analysis.

Computer methods and programs in biomedicine
OBJECTION: The aim of this study is to develop an early-warning model for identifying high-risk populations of pneumoconiosis by combining lung 3D images and radiomics lung texture features.

Cystic renal mass screening: machine-learning-based radiomics on unenhanced computed tomography.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: The present study compares the diagnostic performance of unenhanced computed tomography (CT) radiomics-based machine learning (ML) classifiers and a radiologist in cystic renal masses (CRMs).

Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Brain metastasis (BM) is most common in non-small cell lung cancer (NSCLC) patients. This study aims to enhance BM risk prediction within three years for advanced NSCLC patients by using a deep learning-based segmentation and computed tom...

Ct-based subregional radiomics using hand-crafted and deep learning features for prediction of therapeutic response to anti-PD1 therapy in NSCLC.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To develop and externally validate subregional radiomics for predicting therapeutic response to anti-PD1 therapy in non-small-cell lung cancer (NSCLC).

Combining Low-Dose Computer-Tomography-Based Radiomics and Serum Metabolomics for Diagnosis of Malignant Nodules in Participants of Lung Cancer Screening Studies.

Biomolecules
Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source of auxiliary biomarkers that could help enhance the precision of l...

Fusion Radiomics-Based Prediction of Response to Neoadjuvant Chemotherapy for Osteosarcoma.

Academic radiology
RATIONALE AND OBJECTIVES: Neoadjuvant chemotherapy (NAC) is the most crucial prognostic factor for osteosarcoma (OS), it significantly prolongs progression-free survival and improves the quality of life. This study aims to develop a deep learning rad...