AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 51 to 60 of 518 articles

Clear Filters

Detection of Peri-Pancreatic Edema using Deep Learning and Radiomics Techniques.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Pancreatitis is a major public health issue world-wide; studies show an increase in the number of people experiencing pancreatitis. Identifying peri-pancreatic edema is a pivotal indicator for identifying disease progression and prognosis, emphasizin...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Development and validation of radiomics and deep transfer learning models to assess cognitive impairment in patients with cerebral small vessel disease.

Neuroscience
Cognitive impairment in cerebral small vessel disease (CSVD) progresses subtly but carries significant clinical consequences, necessitating effective diagnostic tools. This study developed and validated predictive models for CSVD-related cognitive im...

Preoperative multiclass classification of thymic mass lesions based on radiomics and machine learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Apart from rare cases such as lymphomas, germ cell tumors, neuroendocrine neoplasms, and thymic hyperplasia, thymic mass lesions (TMLs) are typically categorized into cysts, and thymomas. However, the classification results cannot be dete...

Impact of [F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role.

Seminars in nuclear medicine
Lung cancer remains one of the most prevalent cancers globally and the leading cause of cancer-related deaths, accounting for nearly one-fifth of all cancer fatalities. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([F]FDG...

Development of Hybrid radiomic Machine learning models for preoperative prediction of meningioma grade on multiparametric MRI.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
PURPOSE: To develop and compare machine learning models for distinguishing low and high grade meningiomas on multiparametric MRI.

Diffusion-Weighted Imaging-Based Radiomics Features and Machine Learning Method to Predict the 90-Day Prognosis in Patients With Acute Ischemic Stroke.

The neurologist
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...

Integrating radiomics into predictive models for low nuclear grade DCIS using machine learning.

Scientific reports
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...