OBJECTIVES: This study aimed to develop an integrated segmentation-free deep learning (DL) framework to predict multiple aspects of radiotherapy outcome in pharyngeal cancer patients by analyzing pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron...
OBJECTIVES: Low-dose (LD) PET imaging would lead to reduced image quality and diagnostic efficacy. We propose a deep learning (DL) method to reduce radiotracer dosage for PET studies while maintaining diagnostic quality.
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.
INTRODUCTION: Attenuation correction (AC) is necessary for accurate assessment of radioactive distribution in single photon emission computed tomography (SPECT). The method of computed tomography-based AC (CTAC) is widely used because of its accuracy...
Cancer imaging : the official publication of the International Cancer Imaging Society
39533388
BACKGROUND: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from F-fluorodeoxyglucose (F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph n...
Reporting of diagnostic nuclear images in clinical cancer management is generally qualitative. Theranostic treatment with Lu radioligands for prostate cancer and neuroendocrine tumors is routinely given as the same arbitrary fixed administered activi...
RATIONALE AND OBJECTIVES: This study aimed to develop a radiomics model characterized by Ga-fibroblast activation protein inhibitors (FAPI) positron emission tomography (PET) imaging to predict microvascular invasion (MVI) of hepatocellular carcinoma...
European journal of nuclear medicine and molecular imaging
39621094
PURPOSE: The objective of this study is to generate reliable K parametric images from a shortened [F]FDG total-body PET for clinical applications using a self-supervised neural network algorithm.
OBJECTIVES: In this study, we propose an interpretable deep learning radiomics (IDLR) model based on [F]FDG PET images to diagnose the clinical spectrum of Alzheimer's disease (AD) and predict the progression from mild cognitive impairment (MCI) to A...