Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional...
BACKGROUND AND PURPOSE: Tumor bed (TB) is the residual cavity of resected tumor after surgery. Delineating TB from CT is crucial in generating clinical target volume for radiotherapy. Due to multiple surgical effects and low image contrast, segmentin...
Journal of applied clinical medical physics
39540681
OBJECTIVE: We investigated the feasibility of deep learning-based ultra-low dose kV-fan-beam computed tomography (kV-FBCT) image enhancement algorithm for clinical application in abdominal and pelvic tumor radiotherapy.
BACKGROUND: Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since the...
BACKGROUND: In magnetic resonance image (MRI)-guided radiotherapy (MRgRT), 2D rapid imaging is commonly used to track moving targets with high temporal frequency to minimize gating latency. However, anatomical motion is not constrained to 2D, and a p...
BACKGROUND: Cone-beam computed tomography (CBCT) is a crucial daily imaging modality in image-guided and adaptive radiotherapy. However, the use of ionizing radiation in CBCT imaging increases the risk of secondary cancers, which is particularly conc...
This study aimed to develop and evaluate an efficient method to automatically segment T1- and T2-weighted brain magnetic resonance imaging (MRI) images. We specifically compared the segmentation performance of individual convolutional neural network ...
International journal of radiation oncology, biology, physics
39800329
PURPOSE: High dose rate (HDR) prostate brachytherapy (BT) procedure requires image-guided needle insertion. Given that general anesthesia is often employed during the procedure, minimizing overall planning time is crucial. In this study, we explore t...
BACKGROUND: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to comp...
International journal of radiation oncology, biology, physics
39357787
PURPOSE: Magnetic resonance (MR)-guided radiation therapy enables online adaptation to address intra- and interfractional changes. To address the need of high-fidelity synthetic computed tomography (synCT) required for dose calculation, we developed ...