AIMC Topic: Receptor, ErbB-2

Clear Filters Showing 41 to 50 of 99 articles

A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer.

La Radiologia medica
OBJECTIVE: To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal g...

Preoperative Differentiation of HER2-Zero and HER2-Low from HER2-Positive Invasive Ductal Breast Cancers Using BI-RADS MRI Features and Machine Learning Modeling.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2-low is currently considered HER2-negative, but patients may be eligible to receive new a...

Deep learning-assisted monitoring of trastuzumab efficacy in HER2-Overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers.

Biosensors & bioelectronics
Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer...

Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP...

Clinical evaluation of deep learning-based risk profiling in breast cancer histopathology and comparison to an established multigene assay.

Breast cancer research and treatment
PURPOSE: To evaluate the Stratipath Breast tool for image-based risk profiling and compare it with an established prognostic multigene assay for risk profiling in a real-world case series of estrogen receptor (ER)-positive and human epidermal growth ...

Combination of DCE-MRI and NME-DWI via Deep Neural Network for Predicting Breast Cancer Molecular Subtypes.

Clinical breast cancer
BACKGROUND: To explore whether the combination of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and nonmono-exponential (NME) model-based diffusion-weighted imaging (DWI) via deep neural network (DNN) can improve the prediction of ...

MRI-Based Machine Learning Radiomics for Preoperative Assessment of Human Epidermal Growth Factor Receptor 2 Status in Urothelial Bladder Carcinoma.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: The human epidermal growth factor receptor 2 (HER2) has recently emerged as hotspot in targeted therapy for urothelial bladder cancer (UBC). The HER2 status is mainly identified by immunohistochemistry (IHC), preoperative and noninvasive ...

A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping.

Neoplasia (New York, N.Y.)
BACKGROUND: Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom char...

A Molecular Typing Method for Invasive Breast Cancer by Serum Raman Spectroscopy.

Clinical breast cancer
BACKGROUND: The incidence of breast cancer ranks highest among cancers and is exceedingly heterogeneous. Immunohistochemical staining is commonly used clinically to identify the molecular subtype for subsequent treatment and prognosis.