AIMC Topic: Retrospective Studies

Clear Filters Showing 1111 to 1120 of 9539 articles

Estimating Visual Acuity With Spectacle Correction From Fundus Photos Using Artificial Intelligence.

JAMA network open
IMPORTANCE: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-correc...

Predicting autoimmune thyroiditis in primary Sjogren's syndrome patients using a random forest classifier: a retrospective study.

Arthritis research & therapy
BACKGROUND: Primary Sjogren's syndrome (pSS) and autoimmune thyroiditis (AIT) share overlapping genetic and immunological profiles. This retrospective study evaluates the efficacy of machine learning algorithms, with a focus on the Random Forest Clas...

Employing a low-code machine learning approach to predict in-hospital mortality and length of stay in patients with community-acquired pneumonia.

Scientific reports
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...

The application of deep learning in early enamel demineralization detection.

PeerJ
OBJECTIVE: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.

International multicenter validation of AI-driven ultrasound detection of ovarian cancer.

Nature medicine
Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection o...

Predicting noncontact injuries of professional football players using machine learning.

PloS one
Noncontact injuries are prevalent among professional football players. Yet, most research on this topic is retrospective, focusing solely on statistical correlations between Global Positioning System (GPS) metrics and injury occurrence, overlooking t...

Application of machine learning in predicting postoperative arrhythmia following transcatheter closure of perimembranous ventricular septal defects.

Kardiologia polska
BACKGROUND: Arrhythmia is a frequent complication following transcatheter device closure of perimembranous ventricular septal defects (pmVSD). However, there is currently a lack of a convenient tool for predicting postoperative arrhythmia.

Iodine Density of Lymphoma, Metastatic SCCA, and Normal Cervical lymph nodes: A Comparative Analysis Based on DLSCT.

F1000Research
OBJECTIVE: To compare iodine density (ID) and contrast-enhanced attenuation value (CEAV) from dual-layer spectral computed tomography (DLSCT) scans of lymphomatous, metastatic squamous cell carcinoma (SCCA), and normal cervical lymph nodes.

Prognostic Features for Overall Survival in Male Diabetic Patients Undergoing Hemodialysis Using Elastic Net Penalized Cox Regression; A Machine Learning Approach.

Archives of Iranian medicine
BACKGROUND: Diabetics constitute a significant percentage of hemodialysis (HD) patients with higher mortality, especially among male patients. A machine learning algorithm was used to optimize the prediction of time to death in male diabetic hemodial...

F-18 FDG PET/CT based Preoperative Machine Learning Prediction Models for Evaluating Regional Lymph Node Metastasis Status of Patients with Colon Cancer.

Asian Pacific journal of cancer prevention : APJCP
OBJECTIVE: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regio...