AIMC Topic: Retrospective Studies

Clear Filters Showing 1461 to 1470 of 9539 articles

Automatic delineation of cervical cancer target volumes in small samples based on multi-decoder and semi-supervised learning and clinical application.

Scientific reports
Radiotherapy has been demonstrated to be one of the most significant treatments for cervical cancer, during which accurate and efficient delineation of target volumes is critical. To alleviate the data demand of deep learning and promote the establis...

Association of artificial intelligence-based immunoscore with the efficacy of chemoimmunotherapy in patients with advanced non-squamous non-small cell lung cancer: a multicentre retrospective study.

Frontiers in immunology
PURPOSE: Currently, chemoimmunotherapy is effective only in a subset of patients with advanced non-squamous non-small cell lung cancer. Robust biomarkers for predicting the efficacy of chemoimmunotherapy would be useful to identify patients who would...

Optimizing thyroid AUS nodules malignancy prediction: a comprehensive study of logistic regression and machine learning models.

Frontiers in endocrinology
BACKGROUND: The accurate diagnosis of thyroid nodules with indeterminate cytology, particularly in the atypia of undetermined significance (AUS) category, remains challenging. This study aims to predict the risk of malignancy in AUS nodules by compar...

Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explor...

A critical comparative study of the performance of three AI-assisted programs for bone age determination.

European radiology
OBJECTIVES: To date, AI-supported programs for bone age (BA) determination for medical use in Europe have almost only been validated separately, according to Greulich and Pyle (G&P). Therefore, the current study aimed to compare the performance of th...

Minimizing prostate diffusion weighted MRI examination time through deep learning reconstruction.

Clinical imaging
PURPOSE: To study the diagnostic image quality of high b-value diffusion weighted images (DWI) derived from standard and variably reduced datasets reconstructed with a commercially available deep learning reconstruction (DLR) algorithm.

A deep learning approach for gastroscopic manifestation recognition based on Kyoto Gastritis Score.

Annals of medicine
OBJECTIVE: The risk of gastric cancer can be predicted by gastroscopic manifestation recognition and the Kyoto Gastritis Score. This study aims to validate the applicability of AI approaches for recognizing gastroscopic manifestations according to th...

Optimizing anemia management using artificial intelligence for patients undergoing hemodialysis.

Scientific reports
Patients with end-stage kidney disease (ESKD) frequently experience anemia, and maintaining hemoglobin (Hb) levels within a targeted range using erythropoiesis-stimulating agents (ESAs) is challenging. This study introduces a gated recurrent unit-att...

Artificial intelligence tools trained on human-labeled data reflect human biases: a case study in a large clinical consecutive knee osteoarthritis cohort.

Scientific reports
Humans have been shown to have biases when reading medical images, raising questions about whether humans are uniform in their disease gradings. Artificial intelligence (AI) tools trained on human-labeled data may have inherent human non-uniformity. ...

A Deep Learning Model to Predict Breast Implant Texture Types Using Ultrasonography Images: Feasibility Development Study.

JMIR formative research
BACKGROUND: Breast implants, including textured variants, have been widely used in aesthetic and reconstructive mammoplasty. However, the textured type, which is one of the shell texture types of breast implants, has been identified as a possible eti...