AIMC Topic: Retrospective Studies

Clear Filters Showing 311 to 320 of 9150 articles

Novel deep learning algorithm based MRI radiomics for predicting lymph node metastases in rectal cancer.

Scientific reports
To explore the value of applying the MRI-based radiomic nomogram for predicting lymph node metastasis (LNM) in rectal cancer (RC). This retrospective analysis used data from 430 patients with RC from two medical centers. The patients were categorized...

A Risk Prediction Model (CMC-AKIX) for Postoperative Acute Kidney Injury Using Machine Learning: Algorithm Development and Validation.

Journal of medical Internet research
BACKGROUND: Postoperative acute kidney injury (AKI) is a significant risk associated with surgeries under general anesthesia, often leading to increased mortality and morbidity. Existing predictive models for postoperative AKI are usually limited to ...

Developing a Machine Learning Model for Predicting 30-Day Major Adverse Cardiac and Cerebrovascular Events in Patients Undergoing Noncardiac Surgery: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Considering that most patients with low or no significant risk factors can safely undergo noncardiac surgery without additional cardiac evaluation, and given the excessive evaluations often performed in patients undergoing intermediate or...

Development and validation of Prediction models for radiation-induced hypoglossal neuropathy in patients with nasopharyngeal carcinoma.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: To establish predictive models for radiation-induced hypoglossal neuropathy (RIHN) in patients with nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT).

Application of an interpretable machine learning method to predict the risk of death during hospitalization in patients with acute myocardial infarction combined with diabetes mellitus.

Acta cardiologica
BACKGROUND: Predicting the prognosis of patients with acute myocardial infarction (AMI) combined with diabetes mellitus (DM) is crucial due to high in-hospital mortality rates. This study aims to develop and validate a mortality risk prediction model...

Application of machine learning in assessing disease activity in SLE.

Lupus science & medicine
OBJECTIVE: SLE is a chronic autoimmune disease with immune complex deposition in various organs, causing inflammation. The Systemic Lupus Erythematosus Disease Activity Index 2000 assesses disease severity but is subjective. This study aimed to const...

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

A neural network approach to glomerular filtration rate estimation: a single-centre retrospective audit.

Nuclear medicine communications
OBJECTIVES: The 2009 Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation without race correction factor is frequently used for an estimate of glomerular filtration rate (eGFR) and to support a single-sample GFR regime. This study exa...

Using Large Language Models to Automate Data Extraction From Surgical Pathology Reports: Retrospective Cohort Study.

JMIR formative research
BACKGROUND: Popularized by ChatGPT, large language models (LLMs) are poised to transform the scalability of clinical natural language processing (NLP) downstream tasks such as medical question answering (MQA) and automated data extraction from clinic...