Chronic kidney disease (CKD) is a major public health problem worldwide associated with cardiovascular disease, renal failure, and mortality. To effectively address this growing burden, innovative solutions to management are urgently required. We co...
BACKGROUND: Takotsubo cardiomyopathy (TC) is an acute heart failure syndrome characterized by transient left ventricular dysfunction, often triggered by stress. Data on risk scores predicting mortality in TC is sparse. We developed a machine-learning...
Concerns regarding chronic injuries (e.g., fibrosis and carcinogenesis) induced by nanoparticles raised public health concerns and need to be rapidly assessed in hazard identification. Although in silico analysis is commonly used for risk assessment ...
The Journal of dermatological treatment
Mar 19, 2025
BACKGROUND: Identifying the risk of psoriasis relapse after discontinuing biologics can help optimize treatment strategies, potentially reducing relapse rates and alleviating the burden of disease management.
OBJECTIVE: Prostate cancer (PCa) is highly heterogeneous, making early detection of adverse pathological features crucial for improving patient outcomes. This study aims to predict PCa aggressiveness and identify radiomic and protein biomarkers assoc...
Macrovascular complications, including stroke, cardiovascular disease (CVD), and peripheral vascular disease (PVD), significantly contribute to morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). The aim of this study was to ...
Stroke is a leading cause of death and disability in developed countries. We validated an AI-based prediction model for incident stroke using sensors such as fundus cameras and ophthalmoscopes for retinal images, along with socio-demographic data and...
BACKGROUND: Postoperative pulmonary infection (POI) is strongly associated with a poor prognosis and has a high incidence in elderly patients undergoing major surgery. Machine learning (ML) algorithms are increasingly being used in medicine, but the ...
BACKGROUND: To evaluate the predictive utility of machine learning and nomogram in predicting in-hospital mortality in patients with acute myocardial infarction complicated by cardiogenic shock (AMI-CS), and to visualize the model results in order to...
BACKGROUND: Low birth weight (LBW) is a critical factor linked to neonatal morbidity and mortality. Early prediction is essential for timely interventions. This study aimed to develop and evaluate predictive models for LBW using machine learning algo...