AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Factors

Showing 371 to 380 of 2301 articles

Clear Filters

Clinical characteristics and prediction model of re-positive nucleic acid tests among Omicron infections by machine learning: a real-world study of 35,488 cases.

BMC infectious diseases
BACKGROUND: During the Omicron BA.2 variant outbreak in Shanghai, China, from April to May 2022, PCR nucleic acid test re-positivity (TR) occurred frequently, yet the risk factors and predictive models for TR remain unclear. This study aims to identi...

Machine Learning-Based Model for Prediction of Post-Stroke Cognitive Impairment in Acute Ischemic Stroke: A Cross-Sectional Study.

Neurology India
BACKGROUND AND OBJECTIVE: Early identification of post-stroke cognitive impairment (PSCI) is an important challenge for clinicians. In this study, we aimed to build a machine learning-based prediction model for PSCI and uncover potential risk factors...

Clinical characteristics of adrenal crisis in 371 adult patients with glucocorticoid-induced adrenal insufficiency.

Frontiers in endocrinology
BACKGROUND: Glucocorticoid-induced adrenal insufficiency (GIAI) is a hypothalamic-pituitary-adrenal (HPA) axis dysfunction caused by long-term use of exogenous steroids. Adrenal crisis (AC) is an acute complication of GIAI and one of the reasons for ...

Exploring phenotypes to improve long-term mortality risk stratification in obstructive sleep apnea through a machine learning approach: an observational cohort study.

European journal of internal medicine
BACKGROUND: Obstructive sleep apnea (OSA) is a heterogeneous sleep disorder for which the identification of phenotypes might help for risk stratification for long-term mortality. Thus, the aim of the study was to identify distinct phenotypes of OSA a...

Development of a machine learning model for prediction of intraventricular hemorrhage in premature neonates.

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
PURPOSE: Intraventricular hemorrhage (IVH) is a common and severe complication in premature neonates, leading to long-term neurological impairments. Early prediction and identification of risk factors for IVH in premature neonates are crucial for imp...

Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Accurate prediction of perioperative major adverse cardiovascular events (MACEs) is crucial, as it not only aids clinicians in comprehensively assessing patients' surgical risks and tailoring personalized surgical and periop...

Artificial intelligence improves mammography-based breast cancer risk prediction.

Trends in cancer
Artificial intelligence (AI) is enabling us to delve deeply into the information inherent in a mammogram and identify novel features associated with high risk of a future breast cancer diagnosis. Here, we discuss how AI is improving mammographic dens...