AIMC Topic: Risk Factors

Clear Filters Showing 61 to 70 of 2490 articles

Association of sarcopenia with all-cause and cause-specific mortality in cancer patients: development and validation of a 3-year and 5-year survival prediction model.

BMC cancer
BACKGROUND: Sarcopenia is a clinicopathological condition characterized by a decrease in muscle strength and muscle mass, playing a crucial role in the prognosis of cancer. Therefore, this study aims to investigate the association between sarcopenia ...

Preterm birth trends and risk factors in a multi-ethnic Asian population: A retrospective study from 2017 to 2023, can we screen and predict this?

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Preterm birth (PTB) remains a leading cause of perinatal morbidity and mortality worldwide. Understanding Singapore's PTB trends and associated risk factors can inform effective strategies for screening and intervention. This study anal...

Association between atherogenicity indices and prediabetes: a 5-year retrospective cohort study in a general Chinese physical examination population.

Cardiovascular diabetology
BACKGROUND AND OBJECTIVE: Atherogenicity indices have emerged as promising markers for cardiometabolic disorders, yet their relationship with prediabetes risk remains unclear. This study aimed to comprehensively evaluate the associations between six ...

Development of a risk prediction model for secondary infection in severe/critical COVID-19 patients.

BMC infectious diseases
OBJECTIVE: This study aimed to develop a predictive model for secondary infections in patients with severe or critical COVID-19 by analyzing clinical characteristics and laboratory indicators.

Postpartum depression in Northeastern China: a cross-sectional study 6 weeks after giving birth.

Frontiers in public health
INTRODUCTION: Postpartum depression (PPD) is a prevalent mental health issue that poses significant challenges to maternal wellbeing and infant development. We aimed to determine the prevalence of PPD and to investigate its associated determinants an...

Development and validation of a nomogram for differentiating immune checkpoint inhibitor-related pneumonitis from pneumonia in patients undergoing immunochemotherapy: a multicenter, real-world, retrospective study.

Frontiers in immunology
BACKGROUND: Immune Checkpoint Inhibitor-related Pneumonitis (CIP) exhibits high morbidity and mortality rates in the real world, often coexisting with pneumonia, particularly after immunochemotherapy. We aimed to develop and validate a non-invasive n...

Potential Modulatory Roles of Gut Microbiota and Metabolites in the Associations of Macronutrient-to-Physical Activity Ratios With Dyslipidemia.

Journal of the American Heart Association
BACKGROUND: Lifestyle factors toward diet and physical activity (PA) may directly influence the pathophysiology of dyslipidemia. However, the associations of the specific macronutrient-to-PA ratio with dyslipidemia, and the underlying mechanisms rega...

A correlational study of plasma galectin-3 as a potential predictive marker of postoperative delirium in patients with acute aortic dissection.

Scientific reports
This study aimed to demonstrate whether plasma galectin-3 could predict the development of postoperative delirium (POD) in patients with acute aortic dissection (AAD). Prospective, observational study. Cardiac surgery intensive care unit. Consecutive...

Quantitative analysis and clinical determinants of orthodontically induced root resorption using automated tooth segmentation from CBCT imaging.

BMC oral health
BACKGROUND: Orthodontically induced root resorption (OIRR) is difficult to assess accurately using traditional 2D imaging due to distortion and low sensitivity. While CBCT offers more precise 3D evaluation, manual segmentation remains labor-intensive...

Enhancing clinical decision-making in closed pelvic fractures with machine learning models.

Biomolecules & biomedicine
Closed pelvic fractures can lead to severe complications, including hemodynamic instability (HI) and mortality. Accurate prediction of these risks is crucial for effective clinical management. This study aimed to utilize various machine learning (ML)...