Due to a growing demand for a viable label-free observation method in the biomedical field, many techniques, such as quantitative phase imaging and Raman spectroscopy, have been studied, and a complementary approach, hyperspectral imaging, has also b...
Microinjection into single cells in brain tissue is a powerful technique to study and manipulate neural stem cells. However, such microinjection requires expertise and is a low-throughput process. We developed the "Autoinjector", a robot that utilize...
Neuronal replacement therapies rely on the differentiation of specific cell types from embryonic or induced pluripotent stem cells, or on the direct reprogramming of differentiated adult cells via the expression of transcription factors or signaling...
A central question in developmental neurobiology is how neural stem and progenitor cells form the brain. To answer this question, one needs to label, manipulate, and follow single cells in the brain tissue with high resolution over time. This task is...
The differentiation of neural stem cells (NSCs) into neurons is proposed to be critical in devising potential cell-based therapeutic strategies for central nervous system (CNS) diseases, however, the determination and prediction of differentiation is...
The development of in vitro neural networks depends to a large extent on the scaffold properties, including the scaffold stiffness, porosity, and dimensionality. Herein, we developed a method to generate interconnected neural clusters in a multiscale...
Although many neurotoxicity prediction studies of food additives have been developed, they are applicable in a qualitative way. We aimed to develop a novel prediction score that is described quantitatively and precisely. We examined cell viability, r...