AIMC Topic:
ROC Curve

Clear Filters Showing 1361 to 1370 of 3174 articles

Reliable Prediction Models Based on Enriched Data for Identifying the Mode of Childbirth by Using Machine Learning Methods: Development Study.

Journal of medical Internet research
BACKGROUND: The use of artificial intelligence has revolutionized every area of life such as business and trade, social and electronic media, education and learning, manufacturing industries, medicine and sciences, and every other sector. The new ref...

Natural language processing for the surveillance of postoperative venous thromboembolism.

Surgery
BACKGROUND: The objective of this study was to develop a portal natural language processing approach to aid in the identification of postoperative venous thromboembolism events from free-text clinical notes.

A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.

PloS one
PURPOSE: Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in compute...

An Effective Method for Detecting and Classifying Diabetic Retinopathy Lesions Based on Deep Learning.

Computational and mathematical methods in medicine
Diabetic retinopathy occurs as a result of the harmful effects of diabetes on the eyes. Diabetic retinopathy is also a disease that should be diagnosed early. If not treated early, vision loss may occur. It is estimated that one third of more than ha...

i4mC-EL: Identifying DNA N4-Methylcytosine Sites in the Mouse Genome Using Ensemble Learning.

BioMed research international
As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) plays a crucial role in controlling gene replication, expression, cell cycle, DNA replication, and differentiation. The accurate identification of 4mC sites is necessary to und...

Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning-Driven Approach.

World neurosurgery
BACKGROUND: Given the significant cost and morbidity of patients undergoing lumbar fusion, accurate preoperative risk-stratification would be of great utility. We aim to develop a machine learning model for prediction of major complications and readm...

A deep learning system for detecting diabetic retinopathy across the disease spectrum.

Nature communications
Retinal screening contributes to early detection of diabetic retinopathy and timely treatment. To facilitate the screening process, we develop a deep learning system, named DeepDR, that can detect early-to-late stages of diabetic retinopathy. DeepDR ...

Machine learning prediction of sleep stages in dairy cows from heart rate and muscle activity measures.

Scientific reports
Sleep is important for cow health and shows promise as a tool for assessing welfare, but methods to accurately distinguish between important sleep stages are difficult and impractical to use with cattle in typical farm environments. The objective of ...

COVID-19 diagnosis by routine blood tests using machine learning.

Scientific reports
Physicians taking care of patients with COVID-19 have described different changes in routine blood parameters. However, these changes hinder them from performing COVID-19 diagnoses. We constructed a machine learning model for COVID-19 diagnosis that ...