AIMC Topic: ROC Curve

Clear Filters Showing 1481 to 1490 of 3402 articles

Multi-institutional development and external validation of machine learning-based models to predict relapse risk of pancreatic ductal adenocarcinoma after radical resection.

Journal of translational medicine
BACKGROUND: Surgical resection is the only potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC) and the survival of patients after radical resection is closely related to relapse. We aimed to develop models to predict the risk o...

Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study.

The Lancet. Digital health
BACKGROUND: Early detection of postoperative complications, including organ failure, is pivotal in the initiation of targeted treatment strategies aimed at attenuating organ damage. In an era of increasing health-care costs and limited financial reso...

Non-invasive thyroid detection based on electroglottogram signal using machine learning classifiers.

Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
Thyroid is a butterfly shaped gland located in the neck region. Hormones are secreted by the thyroid gland that is responsible for various functions that maintain metabolism of the body. The variance in secretion of the hormones causes disorders such...

Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers.

Computational and mathematical methods in medicine
Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing r...

Risk prediction for delayed clearance of high-dose methotrexate in pediatric hematological malignancies by machine learning.

International journal of hematology
This study aimed to establish a predictive model to identify children with hematologic malignancy at high risk for delayed clearance of high-dose methotrexate (HD-MTX) based on machine learning. A total of 205 patients were recruited. Five variables ...

A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ.

Molecular diversity
Nowadays, more and more attention has been attracted to develop selective PI3Kγ inhibitors, but the unique structural features of PI3Kγ protein make it a very big challenge. In the present study, a virtual screening strategy based on machine learning...

Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model.

Molecular diversity
DGAT1 plays a crucial controlling role in triglyceride biosynthetic pathways, which makes it an attractive therapeutic target for obesity. Thus, development of DGAT1 inhibitors with novel chemical scaffolds is desired and important in the drug discov...

Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion.

Clinical neuroradiology
PURPOSE: The objective of this study was to predict hematoma expansion (HE) by radiomic models based on different machine learning methods and determine the best radiomic model through the comparison.

Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.

PloS one
BACKGROUND: The World Health Organization (WHO)-defined radiological pneumonia is a preferred endpoint in pneumococcal vaccine efficacy and effectiveness studies in children. Automating the WHO methodology may support more widespread application of t...