This study aimed to develop a deep learning system for the detection of three-rooted mandibular first molars (MFMs) on panoramic radiographs and to assess its diagnostic performance. Panoramic radiographs, together with cone beam computed tomographic...
BACKGROUND: While deep learning classifiers have shown remarkable results in detecting chest X-ray (CXR) pathologies, their adoption in clinical settings is often hampered by the lack of transparency. To bridge this gap, this study introduces the neu...
The billing database of the universal healthcare system in Japan potentially includes large-cohort data of patients with immunoglobulin A nephropathy, diagnosis codes aimed at billing should not be directly used for clinical research because of the r...
BACKGROUND: Acinetobacter baumanni infection is a leading cause of morbidity and mortality in the Intensive Care Unit (ICU). Early recognition of patients at risk for infection allows early proper treatment and is associated with improved outcomes. T...
Previous models of depression outcomes have been limited by symptom heterogeneity within populations. This study conducted a retrospective analysis using latent growth mixture models to identify heterogeneous trajectories within a clinical population...
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framew...
BACKGROUND: Preterm birth (PTB) is a significant cause of neonatal mortality and long-term health issues. Accurate prediction and timely prevention of PTB are essential for reducing associated child mortality and morbidity. Traditional predictive met...
BACKGROUND: Diabetic retinopathy (DR) is a major complication of diabetes, leading to severe vision impairment. Understanding the molecular mechanisms, particularly PANoptosis, underlying DR is crucial for identifying potential biomarkers and therape...
BACKGROUND: Ex vivo confocal laser scanning microscopy (EVCM) is an emerging imaging modality that enables near real-time histology of whole tissue samples. However, the adoption of EVCM into clinical routine is partly limited because the recognition...
Machine Learning (ML) techniques require novel computer programming skills along with clinical domain knowledge to produce a useful model. We demonstrate the use of a cloud-based ML tool that does not require any programming expertise to develop, val...