AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 381 to 390 of 2873 articles

Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy.

BMC medical imaging
BACKGROUND: To evaluate the clinical performance of two deep learning methods, one utilizing real clinical pairs and the other utilizing simulated datasets, in enhancing image quality for two-dimensional (2D) fast whole-body scintigraphy (WBS).

MR Cranial Bone Imaging: Evaluation of Both Motion-Corrected and Automated Deep Learning Pseudo-CT Estimated MR Images.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: CT imaging exposes patients to ionizing radiation. MR imaging is radiation free but previously has not been able to produce diagnostic-quality images of bone on a timeline suitable for clinical use. We developed automated moti...

Assessing the Performance of Artificial Intelligence Models: Insights from the American Society of Functional Neuroradiology Artificial Intelligence Competition.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Artificial intelligence models in radiology are frequently developed and validated using data sets from a single institution and are rarely tested on independent, external data sets, raising questions about their generalizabil...

The utility of a machine learning model in identifying people at high risk of type 2 diabetes mellitus.

Expert review of endocrinology & metabolism
BACKGROUND: According to previous reports, very high percentages of individuals in Saudi Arabia are undiagnosed for type 2 diabetes mellitus (T2DM). Despite conducting several screening and awareness campaigns, these efforts lacked full accessibility...

Evaluation of AI-enhanced non-mydriatic fundus photography for diabetic retinopathy screening.

Photodiagnosis and photodynamic therapy
OBJECTIVE: To assess the feasibility of using non-mydriatic fundus photography in conjunction with an artificial intelligence (AI) reading platform for large-scale screening of diabetic retinopathy (DR).

Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera.

BMJ open
OBJECTIVES: Despite global research on early detection of age-related macular degeneration (AMD), not enough is being done for large-scale screening. Automated analysis of retinal images captured via smartphone presents a potential solution; however,...

Integrating artificial intelligence (S-Detect software) and contrast-enhanced ultrasound for enhanced diagnosis of thyroid nodules: A comprehensive evaluation study.

Journal of clinical ultrasound : JCU
PURPOSE: This study aims to assess the diagnostic efficacy of Korean Thyroid imaging reporting and data system (K-TIRADS), S-Detect software and contrast-enhanced ultrasound (CEUS) when employed individually, as well as their combined application, fo...

Artificial intelligence assisted automatic screening of opportunistic osteoporosis in computed tomography images from different scanners.

European radiology
OBJECTIVES: It is feasible to evaluate bone mineral density (BMD) and detect osteoporosis through an artificial intelligence (AI)-assisted system by using quantitative computed tomography (QCT) as a reference without additional radiation exposure or ...

Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients.

Medical ultrasonography
AIM: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This pro...

The impact of deep learning on diagnostic performance in the differentiation of benign and malignant thyroid nodules.

Medical ultrasonography
AIMS: This study aims to use deep learning (DL) to classify thyroid nodules as benign and malignant with ultrasonography (US). In addition, this study investigates the impact of DL on the diagnostic success of radiologists with different experiences....