AIMC Topic: Signal-To-Noise Ratio

Clear Filters Showing 151 to 160 of 871 articles

Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Feature variability in radiomics studies due to technical and magnet strength parameters is well-known and may be addressed through various preprocessing methods. However, very few studies have evaluated the downstream impact ...

Low-dose computed tomography perceptual image quality assessment.

Medical image analysis
In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold s...

Deep learning method with integrated invertible wavelet scattering for improving the quality ofcardiac DTI.

Physics in medicine and biology
Respiratory motion, cardiac motion and inherently low signal-to-noise ratio (SNR) are major limitations ofcardiac diffusion tensor imaging (DTI). We propose a novel enhancement method that uses unsupervised learning based invertible wavelet scatterin...

Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies.

Journal of imaging informatics in medicine
In recent years, X-ray low-dose computed tomography (LDCT) has garnered widespread attention due to its significant reduction in the risk of patient radiation exposure. However, LDCT images often contain a substantial amount of noises, adversely affe...

Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Deep learning reconstruction (DLR) with denoising has been reported as potentially improving the image quality of magnetic resonance imaging (MRI). Multi-modal MRI is a critical non-invasive method for tumor detection, surgery planning, a...

Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning.

Journal of biophotonics
Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleac...

Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits.

Magma (New York, N.Y.)
OBJECTIVE: To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reco...

A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data.

International journal for numerical methods in biomedical engineering
Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance...