Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide trea...
For newly diagnosed breast cancer, estrogen receptor status (ERS) is a key molecular marker used for prognosis and treatment decisions. During clinical management, ERS is determined by pathologists from immunohistochemistry (IHC) staining of biopsied...
Journal of bioscience and bioengineering
Oct 17, 2020
Deep learning has emerged as a breakthrough tool for the segmentation of images without supporting human experts. Here, we propose an automated approach that uses deep learning to generate pseudo-nuclear staining of cells from phase contrast images. ...
Spatially-resolved molecular profiling by immunostaining tissue sections is a key feature in cancer diagnosis, subtyping, and treatment, where it complements routine histopathological evaluation by clarifying tumor phenotypes. In this work, we presen...
Virchows Archiv : an international journal of pathology
Sep 26, 2020
In patients with suspected lymphoma, the tissue biopsy provides lymphoma confirmation, classification, and prognostic factors, including genetic changes. We developed a deep learning algorithm to detect MYC rearrangement in scanned histological slide...
Of all bacterial infectious diseases, infection by Mycobacterium tuberculosis poses one of the highest morbidity and mortality burdens on humans throughout the world. Due to its speed and cost-efficiency, manual microscopy of auramine-stained sputum ...
Algorithms can improve the objectivity and efficiency of histopathologic slide analysis. In this paper, we investigated the impact of scanning systems (scanners) and cycle-GAN-based normalization on algorithm performance, by comparing different deep ...
Nuclei segmentation is a vital step for pathological cancer research. It is still an open problem due to some difficulties, such as color inconsistency introduced by non-uniform manual operations, blurry tumor nucleus boundaries and overlapping tumor...
BACKGROUND: Identification of bladder layers is a necessary prerequisite to bladder cancer diagnosis and prognosis. We present a method of multi-class image segmentation, which recognizes urothelium, lamina propria, muscularis propria, and muscularis...
Clinical cancer research : an official journal of the American Association for Cancer Research
May 21, 2020
PURPOSE: Although high T-cell density is a well-established favorable prognostic factor in colorectal cancer, the prognostic significance of tumor-associated plasma cells, neutrophils, and eosinophils is less well-defined.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.