Deep learning techniques are increasingly being used to classify medical imaging data with high accuracy. Despite this, due to often limited training data, these models can lack sufficient generalizability to predict unseen test data, produced in dif...
OBJECTIVE: To analyze the efficacy of the S-Detect AI system of the Samsung RS85 ultrasound scanner (South Korea) in stratifying thyroid nodules compared to data obtained by specialist of ultrasound diagnostics.
BACKGROUND: Thyroid cancer, a common endocrine malignancy, has seen increasing incidence, making lymph node metastasis (LNM) a critical factor for recurrence and survival. Radiomics and deep learning (DL) advancements offer the potential for improved...
PURPOSE: Thyroid nodules are common in the general population, and assessing their malignancy risk is the initial step in care. Surgical exploration remains the sole definitive option for indeterminate nodules. Extensive database access is crucial fo...
RATIONALE AND OBJECTIVES: This study aims to develop a radiopathomics model based on preoperative ultrasound and fine-needle aspiration cytology (FNAC) images to enable accurate, non-invasive preoperative risk stratification for patients with papilla...
Endocrinology and metabolism (Seoul, Korea)
39805576
BACKGRUOUND: This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
RATIONALE AND OBJECTIVES: Papillary thyroid carcinoma (PTC) often metastasizes to lateral cervical lymph nodes, especially in level II. This study aims to develop predictive models to identify level II lymph node metastasis (LNM), guiding selective n...
INTRODUCTION: Thyroid cytopathology, particularly in cases of atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), suffers from suboptimal sensitivity and specificity challenges. Recent advancements in digit...