AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tissue Scaffolds

Showing 21 to 30 of 40 articles

Clear Filters

Applications of Computer Modeling and Simulation in Cartilage Tissue Engineering.

Tissue engineering and regenerative medicine
BACKGROUND: Advances in cartilage tissue engineering have demonstrated noteworthy potential for developing cartilage for implantation onto sites impacted by joint degeneration and injury. To supplement resource-intensive in vivo and in vitro studies ...

A New Era for Cyborg Science Is Emerging: The Promise of Cyborganic Beings.

Advanced healthcare materials
Living flesh, hacked beyond known biological borders, and sophisticated machineries, made by humans, are currently being united to address some of the impending challenges in medicine. Imagine biological systems made from smart biomaterials with the ...

Bioinspired Soft Robot with Incorporated Microelectrodes.

Journal of visualized experiments : JoVE
Bioinspired soft robotic systems that mimic living organisms using engineered muscle tissue and biomaterials are revolutionizing the current biorobotics paradigm, especially in biomedical research. Recreating artificial life-like actuation dynamics i...

Machine Learning-Guided Three-Dimensional Printing of Tissue Engineering Scaffolds.

Tissue engineering. Part A
Various material compositions have been successfully used in 3D printing with promising applications as scaffolds in tissue engineering. However, identifying suitable printing conditions for new materials requires extensive experimentation in a time ...

The 3D reconstructed skin micronucleus assay using imaging flow cytometry and deep learning: A proof-of-principle investigation.

Mutation research. Genetic toxicology and environmental mutagenesis
The reconstructed skin micronucleus (RSMN) assay was developed in 2006, as an in vitro alternative for genotoxicity evaluation of dermally applied chemicals or products. In the years since, significant progress has been made in the optimization of th...

Integrated functional neuronal network analysis of 3D silk-collagen scaffold-based mouse cortical culture.

STAR protocols
Bioengineered 3D tunable neuronal constructs are a versatile platform for studying neuronal network functions, offering numerous advantages over existing technologies and providing for the discovery of new biological insights. Functional neural netwo...

Biohybrid soft robots with self-stimulating skeletons.

Science robotics
Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components o...

Stereotactic technology for 3D bioprinting: from the perspective of robot mechanism.

Biofabrication
Three-dimensional (3D) bioprinting has been widely applied in the field of biomedical engineering because of its rapidly individualized fabrication and precisely geometric designability. The emerging demand for bioprinted tissues/organs with bio-insp...

Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning.

Biofabrication
Digital light processing (DLP)-based three-dimensional (3D) printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrica...