AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 301 to 310 of 4962 articles

Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.

Journal for immunotherapy of cancer
BACKGROUND: Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develo...

Establishing a Deep Learning Model That Integrates Pretreatment and Midtreatment Computed Tomography to Predict Treatment Response in Non-Small Cell Lung Cancer.

International journal of radiation oncology, biology, physics
PURPOSE: Patients with identical stages or similar tumor volumes can vary significantly in their responses to radiation therapy (RT) due to individual characteristics, making personalized RT for non-small cell lung cancer (NSCLC) challenging. This st...

CQENet: A segmentation model for nasopharyngeal carcinoma based on confidence quantitative evaluation.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Accurate segmentation of the tumor regions of nasopharyngeal carcinoma (NPC) is of significant importance for radiotherapy of NPC. However, the precision of existing automatic segmentation methods for NPC remains inadequate, primarily manifested in t...

Patellar tilt calculation utilizing artificial intelligence on CT knee imaging.

The Knee
BACKGROUND: In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D obj...

Segment Like A Doctor: Learning reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation.

Medical image analysis
Pancreatic cancer is a lethal invasive tumor with one of the worst prognosis. Accurate and reliable segmentation for pancreas and pancreatic cancer on computerized tomography (CT) images is vital in clinical diagnosis and treatment. Although certain ...

Prediction of Chemotherapy Response in Locally Advanced Breast Cancer Patients at Pre-Treatment Using CT Textural Features and Machine Learning: Comparison of Feature Selection Methods.

Tomography (Ann Arbor, Mich.)
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...

Liver margin segmentation in abdominal CT images using U-Net and Detectron2: annotated dataset for deep learning models.

Scientific reports
The segmentation of liver margins in computed tomography (CT) images presents significant challenges due to the complex anatomical variability of the liver, with critical implications for medical diagnostics and treatment planning. In this study, we ...

Multi-dimensional interpretable deep learning-radiomics based on intra-tumoral and spatial habitat for preoperative prediction of thymic epithelial tumours risk categorisation.

Acta oncologica (Stockholm, Sweden)
BACKGROUND AND PURPOSE: This study aims to develop and compare combined models based on enhanced CT-based radiomics, multi-dimensional deep learning, clinical-conventional imaging and spatial habitat analysis to achieve accurate prediction of thymoma...

Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms.

European journal of medical research
OBJECTIVES: This study aimed to develop a model for predicting peripheral lymph node metastasis (LNM) in thyroid cancer patients by combining enhanced CT radiomic features with machine learning algorithms. It increased the clinical utility and interp...