AIMC Topic: UK Biobank

Clear Filters Showing 11 to 20 of 28 articles

BrainSegFounder: Towards 3D foundation models for neuroimage segmentation.

Medical image analysis
The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This wor...

Sex and population differences in the cardiometabolic continuum: a machine learning study using the UK Biobank and ELSA-Brasil cohorts.

BMC public health
BACKGROUND: The temporal relationships across cardiometabolic diseases (CMDs) were recently conceptualized as the cardiometabolic continuum (CMC), sequence of cardiovascular events that stem from gene-environmental interactions, unhealthy lifestyle i...

Comparing cadence-based and machine learning based estimates for physical activity intensity classification: The UK Biobank.

Journal of science and medicine in sport
OBJECTIVES: Cadence thresholds have been widely used to categorize physical activity intensity in health-related research. We examined the convergent validity of two cadence-based intensity classification approaches against a machine-learning-based i...

Self-Supervised Machine Learning to Characterize Step Counts from Wrist-Worn Accelerometers in the UK Biobank.

Medicine and science in sports and exercise
PURPOSE: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices agains...

Phenome-wide identification of therapeutic genetic targets, leveraging knowledge graphs, graph neural networks, and UK Biobank data.

Science advances
The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting gene-disease associations from gene annotations remains challenging. Here, we introduce Mantis-ML 2.0, a framework integrating AstraZeneca'...

Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank.

Neuroepidemiology
INTRODUCTION: Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk ...

Association between deep learning measured retinal vessel calibre and incident myocardial infarction in a retrospective cohort from the UK Biobank.

BMJ open
BACKGROUND: Cardiovascular disease is a leading cause of global death. Prospective population-based studies have found that changes in retinal microvasculature are associated with the development of coronary artery disease. Recently, artificial intel...

Deep learning predicts prevalent and incident Parkinson's disease from UK Biobank fundus imaging.

Scientific reports
Parkinson's disease is the world's fastest-growing neurological disorder. Research to elucidate the mechanisms of Parkinson's disease and automate diagnostics would greatly improve the treatment of patients with Parkinson's disease. Current diagnosti...

Deep neural network-estimated age using optical coherence tomography predicts mortality.

GeroScience
The concept of biological age has emerged as a measurement that reflects physiological and functional decline with ageing. Here we aimed to develop a deep neural network (DNN) model that predicts biological age from optical coherence tomography (OCT)...

Nonlinear Associations of Accelerometer-Based Sedentary Time With Cognitive Functions in the UK Biobank.

The journals of gerontology. Series B, Psychological sciences and social sciences
OBJECTIVES: Device-based sedentary time shows a nonlinear association with incident dementia among older adults. However, associations between sedentary time and cognitive performance have been inconsistent. We examined potential nonlinear associatio...