INTRODUCTION: The aim of this study was to find the most appropriate variables to input into machine learning algorithms to identify those patients with primary lung malignancy with high risk for metastasis to the bone.
INTRODUCTION: Individuals who develop new-onset diabetes have been identified as a high-risk cohort for pancreatic cancer (PC), exhibiting an incidence rate nearly 8 times higher than the general population. Hence, the targeted screening of this spec...
BACKGROUND: Correctly distinguishing between benign and malignant pulmonary nodules can avoid unnecessary invasive procedures. This study aimed to construct a deep learning radiomics clinical nomogram (DLRCN) for predicting malignancy of pulmonary no...
BACKGROUND AND AIMS: The resect-and-discard strategy for colorectal polyps based on accurate optical diagnosis remains challenges. Our aim was to investigate the feasibility of hyperspectral imaging (HSI) for identifying colorectal polyp properties a...
BACKGROUND: The article explores the potential risk of secondary cancer (SC) due to radiation therapy (RT) and highlights the necessity for new modeling techniques to mitigate this risk.
OBJECTIVE: To create a deep-learning automatic segmentation model for esophageal cancer (EC), metastatic lymph nodes (MLNs) and their adjacent structures using the UperNet Swin network and computed tomography angiography (CTA) images and to improve t...
OBJECTIVE: Breast cancer is one of the leading cancer causes among women worldwide. It can be classified as invasive ductal carcinoma (IDC) or metastatic cancer. Early detection of breast cancer is challenging due to the lack of early warning signs. ...
BACKGROUND: Homologous recombination plays a vital role in the occurrence and drug resistance of gastric cancer. This study aimed to screen new gastric cancer diagnostic biomarkers in the homologous recombination pathway and then used radiomic featur...
BACKGROUND: To explore the efficacy of a prediction model based on diffusion-weighted imaging (DWI) features extracted from deep learning (DL) and radiomics combined with clinical parameters and apparent diffusion coefficient (ADC) values to identify...
BACKGROUND: Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consumin...